
Energy Saving Virtual Machine Allocation in Cloud
Computing

Ruitao Xie∗, Xiaohua Jia†, Kan Yang∗, Bo Zhang∗
Department of Computer Science

City University of Hong Kong
∗{ruitao.xie, kan.yang, Bo.Zhang}@my.cityu.edu.hk

†csjia@cityu.edu.hk

Abstract—In the data center, a server can work in either active
state or power-saving state. The power consumption in the power-
saving state is almost 0, thus it is always desirable to allocate as
many VMs as possible to some active servers and leave the rest
to power-saving state in order to reduce the energy consumption
of the data center. In this paper, we study such a VM allocation
problem. Given a set VMs and a set of servers in a data center,
each VM has a resource demand (CPU, memory, storage) and a
starting time and a finishing time, and each server has resource
capacity. There is an additional energy cost for a server to switch
from power-saving state to active state. The servers are non-
homogeneous. The problem of our concern is to allocate the VMs
onto servers, such that the VMs resource demands can be met
and the total energy consumption of servers is minimized. The
problem is formulated as a boolean integer linear programming
problem. A heuristic algorithm is proposed to solve the problem.
Extensive simulations have been conducted to demonstrate our
proposed method can significantly save the energy consumption
in data centers.

Keywords: Virtual Machine Allocation, Energy Saving, Cloud
Computing, Data Center

I. INTRODUCTION

Virtual Machines (VMs) are a type of infrastructure services

provided by data centers. Cloud users request a VM from a

data center by specifying the resource demands (in terms of

CPU, memory, storage), platform, and duration of the VM.

The data center, upon receiving this user request, will allocate

the VM to a server and reserve all necessary resources on

the server. A server can host multiple VMs, depending on the

capacity of the server and the resource demands of the VMs.

As energy consumption has become a major cost factor and an

environmental issue of data centers, it is important to allocate

VMs to the servers properly such that the energy consumption

can be reduced [1]–[6].

In this paper we study the issue of assigning user VM

requests to servers aiming for minimizing energy consumption

in the data centers. A server can work in either active state

or power-saving state. The power consumption in the power-

saving state is almost 0. Therefore, it is always advantageous

to allocate as many VMs as possible to some active servers

and leave the rest to power-saving state, such that the energy

consumption of the data center can be reduced. However, there

is an energy cost for switching the server between the active

and the power-saving states. It is no good to switch on or off

a server too often. The problem of our concern can be defined

as follows. We are given m VMs and n servers. Each VM

is associated with a set of resource demands (CPU, memory,

storage, etc.) and a starting time and a finishing time. To get

more benefits from the short idle time of servers, we consider

the time unit on the minute or more fine-grained scale. Each

server has resource capacity. Since servers usually share large

disk space by using high speed optical systems in data centers,

as for resource demand of VMs and capacity of servers, we

only focus on CPU and memory. Our problem is to allocate the

VMs onto the servers, such that the resource demands of VMs

can be met and the total energy consumption of the servers is

minimized.

Our problem distinguishes from the existing works in sev-

eral aspects: 1) Our problem allocates a VM on a server

throughout its time duration. It is different from the VM allo-

cation problem in a single time unit formulated as bin-packing

[7], [8]. 2) In our problem, servers are non-homogeneous. Each

server has its own resource capacity, power consumption and

transition cost. Thus, the VMs can not be assigned across the

servers uniformly. While in the existing works [2]–[5], the

loads are assigned uniformly across the homogeneous servers.

3) The objective of our problem is to minimize the energy

consumption of servers. It is different from the works on fixed

interval job scheduling aiming for minimizing busy time [9],

[10], or minimizing the cost of running jobs [11]–[13].

The problem is formulated as a boolean integer linear

programming problem. We propose a heuristic algorithm to

allocate VMs in the increasing order of their starting time.

For each VM, there is a subset of servers having sufficient

spare resources throughout its time duration. From the subset,

a server is selected such that the incremental energy cost

is minimum. Extensive simulations have been conducted to

demonstrate our proposed method can significantly save the

energy consumption in data centers.

The rest of this paper is organized as follows. Section II

presents system model and problem formulation. Section III

presents the heuristic algorithm. The simulations and perfor-

mance evaluations are presented in Section IV. Section V

introduces the previous works related to the virtual machine

allocation in data centers. Section VII concludes the paper.

2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

978-0-7695-5023-7/13 $25.00 © 2013 IEEE

DOI 10.1109/ICDCSW.2013.37

132

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system consists of m VMs and n servers. The VM vj
has time duration [ts

j , t
e
j], where ts

j is the starting time and

te
j is the finishing time. Let RCPU

jt and RMEM
jt denote the CPU

and memory demands respectively of VM vj at the time unit t.
Each server, say si, has CPU and memory capacity, denoted by

CCPU
i and CMEM

i , respectively. We consider the VM allocation

problem in an entire period of [1, T], where T is the longest

time of system planning.
The energy cost of a server in data center has three

components: 1) the operation cost of a server to keep itself

in active state, 2) the operation cost of a server to run VMs,

and 3) the transition cost α incurred in switching a server

back-and-forth between the active state and the power-saving

state. The operation cost of a server can be modeled by an

affine power function as following [4], [14],

P (u) = Pidle + (Ppeak − Pidle)u, (1)

where Pidle is the power when the server is idle, Ppeak is the

power consumed by the server under peak load, and the load

0 ≤ u ≤ 1 is the percentage of CPU capacity used by the

VMs running on it.
Since we consider non-homogeneous servers in the system,

servers have different energy cost for state transition and power

function parameters. Let αi denote the transition cost, and

Pidle,i and Ppeak,i denote the power function parameters of the

server si. Let P 1
i denote the power of the server si consumed

by a VM with one unit of CPU demand. It is

P 1
i =

(Ppeak,i − Pidle,i)

CCPU
i

. (2)

Let Wij denote the cost of the server si consumed by

running the VM vj , which can be represented as:

Wij = P 1
i

te
j∑

t=ts
j

RCPU

jt . (3)

Let the boolean variable xij denote whether the VM vj is

allocated on the server si. Then, the operation cost of the

server si to run VMs throughout time span [1, T] is:

m∑

j=1

Wij xij . (4)

Let the boolean variable yit denote whether the server si is

active or not during time unit t. The operation cost to keep

the server si in active state throughout time span [1, T] is:

T∑

t=1

Pidle,i yit. (5)

We assume before and after the entire time period [1, T] all

servers are in the power-saving state, that is yi0 = 0 and

yi,T+1 = 0. The energy cost of the third component, that is

the transition cost, of the server si can be represented as:

T∑

t=1

αi (yit − yi,t−1)
+, (6)

VM VMVM
VM VM

VM

idle-segmentidle-segment

time unit 1 time unit T

idle-

segment

busy-

segment busy-segment busy-segment

Fig. 1. A server experiences a sequence of time-segments alternating in
running VMs and running no VM.

where f(x)+ denotes max{0, f(x)}. Thus, the total energy

cost of the system is

n∑

i=1

m∑

j=1

Wij xij+

n∑

i=1

T∑

t=1

(Pidle,i yit+αi (yit−yi,t−1)
+) (7)

The problem is formulated as following,

min
n∑

i=1

m∑

j=1

Wij xij +
n∑

i=1

T∑

t=1

(Pidle,i yit + αi (yit − yi,t−1)
+)

(8)

s.t.
m∑

j=1

RCPU

jt xij ≤ CCPU

i yit, ∀i, ∀t (9)

m∑

j=1

RMEM

jt xij ≤ CMEM

i yit, ∀i, ∀t (10)

n∑

i=1

xij = 1 ∀j (11)

xij ≤ yit ∀i, ∀j, ts
j ≤ t ≤ te

j (12)

xij ∈ {0, 1} ∀i, ∀j (13)

yit ∈ {0, 1} ∀i, ∀t (14)

Constraints (9) and (10) are capacity constraints, and ensure

that in each time unit, the resource volume of a server used

by the VMs on it does not exceed its capacity. Constraints

(11) ensure that each VM is allocated on exact one server.

Constraints (12) ensure that each VM is allocated only on the

servers which are active throughout its time duration. In our

model all variables are boolean.

III. HEURISTIC ALGORITHM

The VM allocation problem to minimize the energy cost is

formulated as an integer linear programming, which is NP-

hard. In this section, we present a heuristic algorithm to solve

it. Our algorithm allocates VMs in the increasing order of their

starting time. For each VM, there is a subset of servers having

sufficient spare resources throughout its time duration. From

the subset, a server is selected such that after the allocation

the incremental energy cost is minimum.

Firstly we explain how to get the energy cost in our

allocation algorithm. Considering a server si runs a set of

VMs Vi throughout the entire period [1, T], it experiences a

sequence of time-segments alternating in running VMs (called

busy-segment) and running no VM (called idle-segment), as

shown in Fig. 1. For the busy-segment, the server must be

in active state, the energy cost consists of two components:

133

1) the cost to run VMs and 2) the cost to keep the server in

active. Let BSi denote the set of busy-segments of server si.
Throughout all these time-segments, the server si consumes

the cost as following,
∑

vj∈Vi

Wij +
∑

[t,τ]∈BSi

Pidle,i (τ − t+ 1). (15)

For the idle-segment [t, τ], the server can switch off to save

energy if the transition cost is less than the cost to keep the

server active; otherwise, the server keeps in active state during

the idle-segment. Let ISi denote the set of idle-segments of

server si. Throughout all these time-segments, the server si
consumes the cost as following,

∑

[t,τ]∈ISi

min{Pidle,i (τ − t+ 1), αi}. (16)

Thus, throughout the entire period [1, T], the energy cost

consumed by the server si is

Costi =
∑

vj∈Vi

Wij +
∑

[t,τ]∈BSi

Pidle,i(τ − t+ 1)

+
∑

[t,τ]∈ISi

min{Pidle,i(τ − t+ 1), αi}. (17)

Our algorithm allocates the VMs in the increasing order

of their starting time. All servers are kept in power-saving

state initially. The energy cost of each server is initialized as

0. At each iteration the algorithm selects a server to allocate

the VM vj . Firstly, there is a subset Sj of servers having

sufficient spare CPU and memory for the VM vj throughout

its time duration. Secondly, for each server in the subset Sj , the

energy cost is evaluated from Eq. (17) supposing the VM vj
is allocated on. Thirdly, a server is selected from the subset Sj

such that the incremental energy cost is minimum. The energy

cost of the selected server is updated. Finally, the above steps

are repeated until all VMs are allocated.

By allocating each VM on a server with the least incre-

mental energy cost, our algorithm can save energy due to

the following reasons. Firstly, our algorithm tends to use

the energy efficient servers. Secondly, our algorithm leads

to high resource utilization. The servers with small resource

capacity usually consume lower power than those with large

resource capacity. Our algorithm consolidates VMs on servers

with small resource capacity, so that the server resources are

adequately used. In particular, as the system load is light, our

algorithm can lead to high resource utilization. Thirdly, our

algorithm tends to use the server with low transition cost. For

example, suppose all servers are in the power-saving state, a

VM would be allocated on a server with less transition cost.

IV. SIMULATIONS AND ANALYSIS

A. Baseline method and evaluation metrics

We use First Fit Power Saving (FFPS) method as a baseline

to evaluate our algorithm. In this baseline method, VMs are

allocated in the increasing order of their starting time, and

servers are randomly sorted. Each VM is allocated on the first

TABLE I
THE TYPES OF RESOURCE DEMANDS OF VMS

type CPU(compute unit) memory(GBytes)
standard type 1 1 1.7
standard type 2 2 3.75
standard type 3 4 7.5
standard type 4 8 15
memory-intensive type 1 6.5 17.1
memory-intensive type 2 13 34.2
memory-intensive type 3 26 68.4
CPU-intensive type 1 5 1.7
CPU-intensive type 2 20 7

searched server which can provide sufficient resources to the

VM throughout its time duration. After all VMs are allocated,

each server’s state throughout entire period can be determined.

That is, each server switches off during the idle-segment if the

transition cost is less than the idle power to keep itself active;

while it keeps active during other time-segments. The energy

cost of each server can be calculated from Eq. (17). We define

energy reduction ratio as the reduced cost divided by the cost

of FFPS method.

B. Simulation settings

1) VM settings: In our simulations, VM requests arrive

according to the Poisson process. The mean inter-arrival time

varies from 0.5 to 4 time units. The length of VMs follows

the exponential distribution. The mean length is set to 2, 5 or

8 time units. The starting time and the finishing time of VMs

are integer. The resource demands of each VM is stable and

randomly set to a type in Table I. The parameters in Table

I refer to Amazon Elastic Compute Cloud [15]. Both CPU-

intensive VMs and memory-intensive VMs are simulated to

evaluate our algorithm.

2) Server settings: It is not easy to quantify the CPU of

servers using the compute unit defined by Amazon Elastic

Compute Cloud in practice. Thus, several hypothetical servers

are considered in our simulations, as shown in Table II. Every

type of server corresponds to a pair of CPU and memory

capacity and a pair of power consumption parameters. It is also

difficult to quantify the server power consumption by CPU and

memory. Since a server’s power consumption consists of the

power consumption of all system components: CPU, memory,

disk drivers, network switches, fans etc. [14]. We set the power

parameters as the following simple rules: 1) the server with

CPU of 64 compute units and memory of 80 GBytes is roughly

equivalent to the blade server HP ProLiant BL460c G6 with

80 GBytes memory [16]; 2) the power usage in the idle state

is about 40%-50%, which is common for the servers in the

data center [14]; 3) server power consumption increases as

resource capacity increases.

3) Transition cost settings: During the whole time when

the server switches on, power is consumed at peak rate [17].

Thus, the server’s transition cost is Ppeak times of transition

time. It takes 30s to setup a desktop from hibernate state [17].

In our simulations, the transition time of servers ranges from

30s to 3min. The time unit in our model is 1 minute.

134

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

2

4

6

8

10

12

14

16

18

20

 linear fit of 100 VMs (Adj.R
2
 is 0.96)

 linear fit of 200 VMs (Adj.R
2
 is 0.99)

 linear fit of 300 VMs (Adj.R
2
 is 0.98)

 linear fit of 400 VMs (Adj.R
2
 is 0.98)

 linear fit of 500 VMs (Adj.R
2
 is 0.98)

 100 VMs

 200 VMs

 300 VMs

 400 VMs

 500 VMs

e
n
e
rg

y
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 (

%
)

mean inter-arrivel time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

2

4

6

8

10

12

14

16

18

20

Fig. 2. The energy reduction ratio of the allocation
of all types of VMs on all types of servers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
30

35

40

45

50

55

60

65

70

re
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 (

%
)

mean inter-arrivel time (min)

 memory utilization of our algorithm

 CPU utilization of our algorithm

 memory utilization of FFPS

 CPU utilization of FFPS

Fig. 3. The average CPU utilization and memory
utilization of servers with 100 VMs allocated on.

54 56 58 60 62 64 66
0

2

4

6

8

10

12

14

16

18

20

 logarithm fit of 100 VMs (Adj.R
2
 is 0.90)

 logarithm fit of 200 VMs (Adj.R
2
 is 0.91)

 logarithm fit of 300 VMs (Adj.R
2
 is 0.86)

 logarithm fit of 400 VMs (Adj.R
2
 is 0.93)

 logarithm fit of 500 VMs (Adj.R
2
 is 0.80)

54 56 58 60 62 64 66
0

4

8

12

16

20

 100 VMs

 200 VMs

 300 VMs

 400 VMs

 500 VMs

e
n
e
rg

y
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 (

%
)

load of the system (%)

Fig. 4. The energy reduction ratio vs. the memory
load of the system.

TABLE II
THE TYPES OF RESOURCE CAPACITIES AND POWER CONSUMPTION

PARAMETERS OF SERVERS

type CPU memory Pidle Ppeak
Pidle
Ppeak

(compute unit) (GBytes) (W) (W)
type 1 8 16 25 50 50%
type 2 16 32 41.25 90 45.83%
type 3 32 64 80 175 45.71%
type 4 32 32 70 162.5 43.08%
type 5 64 80 145 325 44.62%

C. Reduction of energy cost

In this group of simulations, we consider all types of VMs

and all types of servers. The transition time of all servers

is set to 1 min. The mean length of VM time durations is

set to 5 min. The number of VMs varies from 100 to 500,

and the number of servers is set to half the VMs’. The other

parameters are set as introduced in IV-B. Each simulation

result is averaged over 50 random runs.

Fig. 2 shows the energy reduction ratio compared to the

FFPS method, where the lines are linear fitting curves of en-

ergy reduction ratio. The adjusted r-square (Adj. R2 for short)

value measures the goodness of fit. The closer the fit is to the

data points, the closer it will be to the value of 1. As shown

in Fig. 2, the energy reduction ratio approximately increases

linearly with the mean inter-arrival time. Our algorithm can

save about 18% energy cost compared to the FFPS method

when the mean inter-arrival time is 4 min. As inter-arrival time

is short, VM requests arrive at a high rate, and this incurs more

VMs at each time unit. The allocation by the FFPS method

can lead to a high resource utilization. As the inter-arrival

time is long, VM requests arrive at a low rate, and there are

fewer VMs at each time unit. The allocation by the FFPS

method can easily lead to a low resource utilization. While

our algorithm allocates each VM on the server with the least

incremental cost and leads to a high resource utilization. Thus,

more energy cost is reduced.

Fig. 3 shows the average CPU utilization and average

memory utilization of servers with 100 VMs allocated on, by

using the FFPS method and our algorithm. The CPU utilization

of a server at time t is the percentage of CPU capacity used by

the VMs running at that time. The average CPU utilization is

calculated by averaging nonzero utilization values, measuring

the CPU usage when the server is active. The average memory

utilization is calculated similarly. As shown in Fig. 3, the CPU

utilization in the FFPS method is low. It incurs large uneven-

ness between two resource utilizations. While our algorithm

can significantly improve the CPU utilization and leads to

two resource utilizations more even. It is also observed that

resource utilization decreases as the mean inter-arrival time

increases. That is because the longer the inter-arrival time is,

the fewer VMs there are at each time unit.

Fig. 2 demonstrates that similar results are obtained with

the varying number of VMs. With the fixed mean inter-arrival

time and mean length of VM time durations, the more VMs

are generated, the longer the entire period of optimization is.

Although a VM time duration overlaps with others, the effect

of other VMs’ allocation long time away is negligible. Thus,

the energy reduction ratio is similar for 100-500 VMs. This

result demonstrates that our algorithm is scalable.

We quantify the CPU load and the memory load of the sys-

tem respectively by the average CPU utilization and average

memory utilization of servers calculated by the FFPS method.

Fig. 4 shows the energy reduction ratio vs. the memory

load, where the lines are logarithm fitting curves of energy

reduction ratio. It demonstrates that as the load increases, the

energy reduction ratio decreases and the decrease rate becomes

slower.

D. The impact of transition time of servers

In this section, we evaluate the impact of transition time of

servers on the performance of our algorithm. In this simula-

tion, we set the mean length of VMs to 5 min. We allocate

100 VMs on 50 servers. All types of VMs and all types of

servers are used. Fig. 5 shows the energy reduction ratio with

varying transition time settings, where lines are fitting curves.

The shorter the transition time is, the less the transition cost

becomes, and the more energy a server can save by switching

off in the idle-segment. Thus, as the transition time becomes

shorter, more energy can be saved by our algorithm, as shown

in Fig. 5.

135

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

2

4

6

8

10

12

14

16

18

20

 linear fit of transition time = 0.5 min (Adj.R
2
 is 0.95)

 linear fit of transition time = 1 min (Adj.R
2
 is 0.96)

 Exponential fit of transition time = 3 min (Adj.R
2
 is 0.97)

 transition time = 0.5 min

 transition time = 1 min

 transition time = 3 min

e
n
e
rg

y
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 (

%
)

mean inter-arrivel time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

4

8

12

16

20

Fig. 5. The energy reduction ratio with varying
transition time settings.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

4

8

12

16

20

24

28

mean inter-arrivel time (min)

 Logarithm fit of mean length = 2min (Adj.R
2
 is 0.98)

 Linear fit of mean length = 5min (Adj.R
2
 is 0.96)

 Linear fit of mean length = 8min (Adj.R
2
 is 0.94)

 mean length of VM time duration = 2 min

 mean length of VM time duration = 5 min

 mean length of VM time duration = 8 min

e
n
e
rg

y
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 (

%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

4

8

12

16

20

24

28

Fig. 6. The energy reduction ratio with varying
mean length of VMs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

4

8

12

16

20

24

28

 logarithm fit of 100 VMs (Adj.R
2
 is 0.92) 100 VMs

 logarithm fit of 200 VMs (Adj.R
2
 is 0.95) 200 VMs

 logarithm fit of 300 VMs (Adj.R
2
 is 0.99) 300 VMs

 logarithm fit of 400 VMs (Adj.R
2
 is 0.98) 400 VMs

 logarithm fit of 500 VMs (Adj.R
2
 is 0.92) 500 VMs

e
n
e
rg

y
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 (

%
)

mean inter-arrivel time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

4

8

12

16

20

24

28

Fig. 7. The energy reduction ratio of the allocation
of standard types of VMs on types 1-3 of servers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
20

30

40

50

60

70

80

90

100

re
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 (

%
)

mean inter-arrivel time (min)

 CPU utilization of our algorithm

 memory utilization of our algorithm

 CPU utilization of FFPS

 memory utilization of FFPS

(a) all types of servers used

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
20

30

40

50

60

70

80

90

100

re
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 (

%
)

mean inter-arrivel time (min)

 CPU utilization of our algorithm

 memory utilization of our algorithm

 CPU utilization of FFPS

 memory utilization of FFPS

(b) types 1-3 of servers used

Fig. 8. The average CPU utilization and memory utilization of servers with 100 standard types of
VMs allocated on.

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

50
 vs. CPU load (all types of servers used)

 vs. memory load (all types of servers used)

 vs. CPU load (types 1-3 of servers used)

 vs. memory load (types 1-3 of servers used)

e
n
e
rg

y
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 (

%
)

load of the system

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

50

 linear fit (Adj.R
2
 is 0.97)

 linear fit (Adj.R
2
 is 0.96)

 linear fit (Adj.R
2
 is 0.99)

 linear fit (Adj.R
2
 is 0.99)

Fig. 9. The energy reduction ratio vs. the load of
the system.

E. The impact of mean length of VMs

In this section, we evaluate the impact of mean length of

VM time durations on the performance of our algorithm. In

this simulation, we allocate 100 VMs on 50 servers. All types

of VMs and all types of servers are used. The mean length of

VMs varies among 2, 5 and 8 min. Fig. 6 shows the energy

reduction ratio with varying mean length of VMs, where lines

are fitting curves. It is shown that the shorter mean length is,

the better our algorithm is compared to the FFPS method. As

the mean length is shorter, the load becomes lighter and more

dynamic. In this case, the FFPS method can easily lead to

low resource utilization. While as the mean length is long, the

load is heavy, thus the FFPS method can get high resource

utilization.

F. Simulations of allocation of standard types of VMs

In this section, we evaluate our algorithm to allocate stan-

dard types of VMs in Table I. Fig. 7 shows the energy

reduction ratio of the allocation of standard types of VMs on

types 1-3 of servers, where the lines are the logarithm fitting

curves. Our algorithm can save up to 24% energy compared

to the FFPS method. In addition, as the mean inter-arrival

time is long, the load becomes light, thus less energy is saved

compared to the FFPS method as shown in Fig. 7.

Fig. 8(a) and Fig. 8(b) show that the average CPU utilization

and memory utilization of servers. It demonstrates that our

algorithm can significantly improve both utilization above

70%. In comparison, when all types of servers are used, the

utilization by using the FFPS method is low to 30%.

As discussed in Section IV-C, we quantify the CPU load and

the memory load of the system respectively by the average

CPU utilization and average memory utilization of servers

calculated by the FFPS method. We evaluate the allocation

of standard types of VMs on both types 1-3 of servers and all

types of servers. Fig. 9 shows the energy reduction ratio vs. the

load of the system, where the lines are linear fitting curves. It

demonstrates that the energy reduction ratio decreases closely

linearly as the load increases. In addition, the energy reduction

ratio when all types of servers are used is higher than the case

when only the types 1-3 of servers are used. It is because in

the former case, the FFPS method incurs the lower utilization

by allocating a VM on a server with large capacity; while our

algorithm has the same high utilization in both cases, as shown

in Fig. 8.

V. RELATED WORK

Power consumptions drastically increase in the data centers,

and research works on energy efficient resource allocation

are emerging in the cloud computing [1], [3]–[6], [18]. [3]

researched to save the energy costs of data center servers in

content delivery networks by turning off servers during periods

of low load. It considered the tradeoffs between three objec-

136

tives: to maximize energy savings, to satisfy the availability

of customer requests, and to minimize server transition times

between turning on and off. [4] researched to reduce the data

center cost by adjusting the number of active servers according

to the dynamic load. [5] researched to determine the system

configurations according to the workload, which are the set of

VMs, the physical machines VMs hosted, and the capacity of

VMs, to optimize both the performance and the power saving

of configurations and adaptations from previous configuration

to the new configuration. In the existing works [2]–[5], servers

are homogeneous and the loads can be assigned uniformly

across the servers. Our problem considers non-homogeneous

servers, thus the VMs can not be assigned across the servers

uniformly. [6] and [18] researched to save energy consumption

in data centers by dynamic migration of VMs according to

the current resource utilization. In comparison, our problem

focuses on saving energy consumption by VM allocation

instead of VM migration.

There are also some works about VM scheduling with other

objectives. [19] researched scheduling VM configurations and

load balancing among servers by a stochastic model, where

VM requests arrive according to a stochastic process. It

optimized the maximum rates at which jobs can be processed

in the system. In addition, the VM scheduling is closely

relative to the fixed interval scheduling [9]–[13], [20]. The

existing works on the fixed interval scheduling problem aim

for minimizing the number of machines to accommodate all

jobs, minimizing the job completion time, minimizing the cost

of scheduling all jobs, maximizing the profit of a selected

subsets of jobs and so on [11]. There are also some works

about efficient architectures of parallel processors [21], [22].

VI. ACKNOWLEDGEMENT

This work was supported by grant from Research Grants

Council of Hong Kong [Project No. CityU 114112].

VII. CONCLUSION

In this paper, we study such a VM allocation problem.

Given a set VMs and a set of servers in a data center, each

VM has a resource demand (CPU, memory, storage) and a

starting time and a finishing time, and each server has resource

capacity. There is an additional energy cost for a server to

switch back-and-forth between power-saving state and active

state. The servers are non-homogeneous. The problem of our

concern is to allocate the VMs onto servers, such that the VMs

resource demands can be met and the total energy consumption

of servers is minimized. A heuristic algorithm is proposed to

solve it. The simulation results demonstrate that our algorithm

can save energy significantly compared to the first fit power

saving method. The impact of various parameters on the

performance of our algorithm is evaluated, such as the mean

inter-arrival time, the mean length of VMs and the transition

cost.

REFERENCES

[1] S. Albers, “Energy-efficient algorithms,” Commun. ACM, vol. 53, no. 5,
pp. 86–96, May 2010.

[2] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, “Optimality
analysis of energy-performance trade-off for server farm management,”
Perform. Eval., vol. 67, no. 11, pp. 1155–1171, Nov. 2010.

[3] V. Mathew, R. Sitaraman, and P. Shenoy, “Energy-aware load balancing
in content delivery networks,” in INFOCOM, 2012, March 2012, pp.
954–962.

[4] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in INFOCOM, 2011, April
2011, pp. 1098–1106.

[5] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu, “Mistral:
Dynamically managing power, performance, and adaptation cost in cloud
infrastructures,” in ICDCS, 2010, June 2010, pp. 62–73.

[6] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[7] D. Breitgand and A. Epstein, “Sla-aware placement of multi-virtual
machine elastic services in compute clouds,” in Integrated Network
Management (IM), 2011, May 2011, pp. 161–168.

[8] J. Xu and J. Fortes, “Multi-objective virtual machine placement in vir-
tualized data center environments,” in 2010 IEEE/ACM Int’l Conference
on Cyber, Physical and Social Computing (CPSCom), Dec. 2010, pp.
179–188.

[9] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom,
T. Tamir, and S. Zaks, “Minimizing total busy time in parallel scheduling
with application to optical networks,” in IPDPS 2009, May 2009, pp.
1–12.

[10] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir, “Minimizing
busy time in multiple machine real-time scheduling,” in FSTTCS’10,
2010, pp. 169–180.

[11] M. Y. Kovalyov, C. Ng, and T. E. Cheng, “Fixed interval scheduling:
Models, applications, computational complexity and algorithms,” Euro-
pean Journal of Operational Research, vol. 178, no. 2, pp. 331–342,
2007.

[12] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani, “An improved
approximation algorithm for resource allocation,” ACM Trans. Algo-
rithms, vol. 7, no. 4, pp. 48:1–48:7, Sep. 2011.

[13] A. Darmann, U. Pferschy, and J. Schauer, “Resource allocation with time
intervals,” Theoretical Computer Science, vol. 411, no. 49, pp. 4217–
4234, 2010.

[14] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[15] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[16] J. Beckett, R. Bradfield, and the Dell Server Performance

Analysis Team, “Power efficiency comparison of enterprise-class
blade servers and enclosures,” A Dell Technical White Paper, 2011.
[Online]. Available: http://www.dell.com/downloads/global/products/
pedge/en/BladePowerStudyWhitePaper 08112010 final.pdf

[17] A. Gandhi, M. Harchol-Balter, and M. A. Kozuch, “Are sleep states
effective in data centers?” in IGCC. IEEE Computer Society, 2012,
pp. 1–10.

[18] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using
virtual machines for cloud computing environment,” IEEE Transactions
on Parallel and Distributed Systems, no. PrePrints, 2012.

[19] S. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in INFOCOM,
2012, March 2012, pp. 702–710.

[20] M. Shalom, A. Voloshin, P. Wong, F. Yung, and S. Zaks, “Online opti-
mization of busy time on parallel machines,” in Theory and Applications
of Models of Computation, 2012, vol. 7287, pp. 448–460.

[21] J. Fan, X. Jia, and X. Lin, “Optimal embeddings of paths with various
lengths in twisted cubes,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 18, no. 4, pp. 511–521, 2007.

[22] J. Fan and X. Jia, “Edge-pancyclicity and path-embeddability of bijective
connection graphs,” Information Science, vol. 178, no. 2, pp. 340–351,
Jan. 2008.

137

