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Abstract—Data access control is an effective way to ensure
data security in the cloud. However, due to data outsourcing
and untrusted cloud servers, the data access control becomes a
challenging issue in cloud storage systems. Existing access control
schemes are no longer applicable to cloud storage systems, be-
cause they either produce multiple encrypted copies of the same
data or require a fully trusted cloud server. Ciphertext-policy
attribute-based encryption (CP-ABE) is a promising technique for
access control of encrypted data. However, due to the inefficiency
of decryption and revocation, existing CP-ABE schemes cannot
be directly applied to construct a data access control scheme for
multiauthority cloud storage systems, where users may hold at-
tributes from multiple authorities. In this paper, we propose data
access control for multiauthority cloud storage (DAC-MACS),
an effective and secure data access control scheme with efficient
decryption and revocation. Specifically, we construct a new mul-
tiauthority CP-ABE scheme with efficient decryption, and also
design an efficient attribute revocation method that can achieve
both forward security and backward security. We further propose
an extensive data access control scheme (EDAC-MACS), which is
secure under weaker security assumptions.

Index Terms—Access control, attribute revocation, CP-ABE, de-
cryption outsourcing, multiauthority cloud.

I. INTRODUCTION

C LOUD storage is an important service of cloud computing
[1]. It allows data owners to host their data in the cloud

and rely on cloud servers to provide “24/7/365” data access
to users (data consumers). Data access control is an effective
way to ensure the data security in the cloud. However, due to
the data outsourcing, the cloud server cannot be fully trusted
to provide data access control service, which means existing
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server-based access control methods are no longer applicable
to cloud storage systems. To achieve data access control on un-
trusted servers, traditional methods usually encrypt the data and
only users holding valid keys are able to decrypt. Although these
methods can provide secure data access control, the key man-
agement is very complicated when more users are in the system.
Data owners also have to stay online all the time to deliver keys
to new users. Moreover, for each data, there are multiple copies
of ciphertexts for users with different keys, which will incur
high storage overhead on the server.
Ciphertext-Policy Attribute-based Encryption (CP-ABE)

[2]–[6] is regarded as one of the most suitable technologies
for data access control in cloud storage systems, because it
gives the data owner more direct control on access policies
and does not require the data owner to distribute keys. In
CP-ABE scheme, there is an authority that is responsible for
attribute management and key distribution. The authority can
be the registration office in a university, the human resource
department in a company, etc. The data owner defines the
access policies and encrypts data under the policies. Each user
will be issued a secret key according to its attributes. A user
can decrypt the ciphertexts only when its attributes satisfy the
access policies.
In cloud storage systems, a user may hold attributes issued

by multiple authorities and the owner may share data with
users administrated to different authorities. For instance, in an
E-health system, the medical data may be shared only with
a user who has the attribute of “Doctor” issued by a hospital
and the attribute “Medical Researcher” issued by a medical
research center. Some CP-ABE schemes [7]–[10] have been
proposed for such multiauthority systems. However, due to the
inefficiency of computation, they cannot be directly applied to
construct the data access control scheme. Basically, there are
two operations in access control that require efficient computa-
tion, namely decryption and revocation.
Revocation Efficiency: Data access in cloud storage systems

is not static, as employees are hired/fired or promoted/de-
moted, it will be necessary to change the attributes of users.
To guarantee the security of attribute revocation, there are
two requirements: 1) Backward Security: The revoked user
(whose attributes are revoked) cannot decrypt new ciphertexts
that require the revoked attributes for decryption; 2) Forward
Security: The newly joined users who have sufficient attributes
are also able to decrypt the previously published ciphertexts. To
achieve these two requirements, a trivial method is to re-encrypt
all the data. But it incurs a high computation overhead as the
amount of data is massive. This motivates us to develop a new
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method that can efficiently deal with the attribute revocation of
users.
Decryption Efficiency: In CP-ABE systems, the users need

to decrypt the data by using their secret keys. However, nowa-
days, users usually use their mobile devices (e.g., smart phones,
tablets etc.) to access the cloud data, and the computation abili-
ties of mobile devices are not as powerful as the one of PCs. This
motivates us to outsource the main computation of decryption
into the cloud server, while still keep the data privacy against
the cloud server.
In this paper, we first construct a newmultiauthority CP-ABE

scheme with efficient decryption and propose an efficient at-
tribute revocation method for it. Then, we apply them to de-
sign an effective access control scheme for multiauthority cloud
storage systems. The main contributions of this work can be
summarized as follows.
1) We propose DAC-MACS (Data Access Control for Multi-
authority Cloud Storage), an effective and secure data ac-
cess control scheme for multiauthority cloud storage sys-
tems, which is secure in the random oracle model and has
better performance than existing schemes.

2) We construct a new multiauthority CP-ABE scheme with
efficient decryption. Specifically, we outsource the main
computation of the decryption by using a token-based de-
cryption method.

3) We also design an efficient immediate attribute revocation
method for multiauthority CP-ABE scheme that achieves
both forward security and backward security. Moreover,
it incurs less communication cost and computation cost
during the attribute revocation.

Compared with the previous conference version [11], we
highly improve the security of DAC-MACS and make it more
practical for multiauthority cloud storage systems. Specifi-
cally, we mainly address the security weakness caused by the
collusion between nonrevoked users and the corrupted .
We first give a straightforward solution by making a security
assumption that all the nonrevoked users will not send their
received update keys to the revoked user. We further remove
this assumption and propose an extensive data access control
scheme (EDAC-MACS) that can achieve the same security
goal. In EDAC-MACS, the revoked user will not be able to
get illegal data access even with the help of any corrupted AA
and nonrevoked user. Without such assumption, EDAC-MACS
is more practical to be implemented in multiauthority cloud
storage systems. We also provide the security analysis of
EDAC-MACS and prove that it is secure under weaker security
assumptions.
The remaining of this paper is organized as follows. We

first define the system model, framework and security model
in Section II. Then, we propose a new multiauthority CP-ABE
scheme with efficient decryption and revocation, and then
apply it to construct DAC-MACS in Section III. In Section IV,
we analyze DAC-MACS in terms of both the security and
the performance. We further extended our DAC-MACS to be
secure under weaker assumptions in Section V. Section VI
gives the related work. Finally, the conclusion is given in
Section VII and the detailed security proof is described in the
Appendix.

Fig. 1. System model of DAC-MACS.

II. SYSTEM MODEL AND SECURITY MODEL

A. System Model

We consider a cloud storage system with multiple authori-
ties, as shown in Fig. 1. The system model consists of five types
of entities: a global certificate authority (CA), attribute authori-
ties ( s), cloud server (server), data owners (owners) and data
consumers (users).
CA. The CA is a global trusted certificate authority in the

system. It sets up the system and accepts the registration of all
the users and s in the system. For each legal user, the CA
assigns a global unique user identity to it and also generates a
global secret/public key pair for this user. However, the CA is
not involved in any attribute management and any generation of
secret keys that are associated with attributes.
AA. Every is an independent attribute authority that is

responsible for issuing, revoking and updating user’s attributes
according to its role or identity. Each is responsible for gen-
erating a public attribute key for each attribute it manages and
a secret key for each user reflecting their attributes.
Server. The cloud server stores owners’ data and provides

data access service to users. It also helps users decrypt cipher-
texts by generating decryption tokens and helps owners update
ciphertexts when an attribute revocation happens.
Owners. Before outsourcing the data, each owner first en-

crypts the data with content keys by using symmetric encryption
techniques. Then, the owner defines the access policies over at-
tributes from multiple s and encrypts content keys under the
policies. They do not trust on the server to do data access con-
trol. Instead, they assume that the server may give the data to all
the users in the system. But, the access control happens inside
the cryptography. That is only when the user’s attributes satisfy
the access policy defined in the ciphertext, the user is able to
decrypt the ciphertext.
Users. Each user is assigned with a global user identity from

the CA and can freely query ciphertexts from the server. To de-
crypt a ciphertext, each user may submit their secret keys is-
sued by some s together with its global public key to the
server and ask for a decryption token. The user then uses the re-
ceived decryption token to decrypt the ciphertext along with its
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global secret key. Only when the user’s attributes satisfy the ac-
cess policy defined in the ciphertext, the server can generate the
correct decryption token. The secret keys and the global user’s
public key can be stored on the server; subsequently, the user
does not need to submit any secret keys if no secret keys are
updated for further decryption token generation.

B. Framework

Definition 1 (DAC-MACS): The framework of DAC-MACS
contains the following phases:
Phase 1: System Initialization: This phase consists of the fol-

lowing algorithms:

• . The CA
setup algorithm takes no input other than the implicit
security parameter . It outputs the master key , the
system parameter , a pair of signature and verification
key of the CA.

•
. The user

registration algorithm takes the system parameter , the
CA’s signature key and the user information
(e.g., name, birthday etc.) as inputs. It authenticates the
user and assigns a global unique user identity to the
user. It outputs the user identity , a pair of global
public/secret key and a certificate

which is signed by the CA.
• . The attribute authority
registration algorithm takes the information of an attribute
authority as input. It authenticates the and
outputs a global authority identity for this .

• .
The attribute authority setup algorithm takes the system
parameter and the global authority identity as
inputs. It outputs a pair of secret/public authority key

, the set of version keys and public
attribute keys for each attributes .

Phase 2: Secret Key Generation:

•
. The secret key generation algorithm takes as

inputs the secret authority key , the system
parameter , the set of public attribute keys , a
set of attributes that describes the secret key,
and the certificate of user . It outputs a secret
key for the user .

Phase 3: Data Encryption:

•
. The encryption algorithm takes as inputs the system

parameter , a set of public keys from the
involved authority set , a set of public attribute keys

, the data and an access structure over
all the selected attributes from the involved s. The
algorithm first encrypts the data by using symmetric
encryption methods with a content key . Then, it
encrypts the content key under the access structure

and outputs a ciphertext . We will assume that the
ciphertext implicitly contains the access structure .

Phase 4: Data Decryption: The data decryption phase con-
sists of Decryption Token Generation by cloud servers and Data
Decryption by users with the following algorithms:

• . The
decryption token generation algorithm takes as inputs
the ciphertext which contains an access structure ,
user’s global public key and a set of user’s secret
keys . If the user holds sufficient
attributes that satisfy the access structure , the algorithm
can successfully compute the correct decryption token

for the ciphertext .
• . The decryption
algorithm takes as inputs the ciphertext , the decryption
token and the user’s global secret key . It first
decrypts the content key and further uses the content key
to decrypt the data. It outputs the data .

Phase 5: Attribute Revocation: This phase contains three
steps: Update Key Generation by s, Secret Key Update by
Nonrevoked Users1 and Ciphertext Update by Servers.

• .
The update key generation algorithm takes as inputs the
secret authority key , a set of user’s secret and
the previous version key of the revoked attribute

. It outputs both the user’s Key Update Key
and the

Ciphertext Update Key .
• .
The user’s secret key update algorithm takes as inputs
the current secret key and its key update key

. It outputs a new secret key .
• . The ciphertext
update algorithm takes as inputs the current ciphertext

and the ciphertext update key . It outputs a
new ciphertext .

C. Security Assumption of Each Entity

In DAC-MACS, we have the following assumptions:
• The CA is trusted, but it is not allowed to decrypt any
ciphertexts.

• Each is also trusted, but it can be corrupted by the
adversary.

• The server is semitrusted (curious but honest). It will not
deny service to any authorized users, and will correctly
execute the tasks assigned by the . But it is curious
about the data content or the received messages.

• Users are dishonest and may collude to obtain unautho-
rized access to data.

• All the nonrevoked users will not give the received update
keys to the revoked user.2

1Users who hold the revoked attribute but have not been revoked.
2We will remove this assumption in the extensive data access control scheme

(EDAC-MACS) in Section V.
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D. Decisional q-Parallel Bilinear Diffie-Hellman Exponent
Assumption

We recall the definition of the decisional q-parallel Bilinear
Diffie-Hellman Exponent (q-parallel BDHE) problem in [5] as
follows. Let be chosen at random and be
a generator of . If an adversary is given

it must be hard to distinguish a valid tuple
from a random element in .
An algorithm that outputs has advantage in

solving q-parallel BDHE in if

Definition 2: The decisional q-parallel BDHE assumption
holds if no polynomial time algorithm has a nonnegligible ad-
vantage in solving the q-parallel BDHE problem.

E. Security Model

We now describe the security model of DAC-MACS by the
following game between a challenger and an adversary. The se-
curity model allows the adversary to query for any secret keys
and update keys that cannot be used to decrypt the challenge ci-
phertext. Similar to [10], we assume that the adversaries can cor-
rupt authorities only statically, but key queries are made adap-
tively. Let denote the set of all the authorities. The security
game is defined as follows.
Setup: The system parameters are generated by running the

CA setup algorithm. The adversary specifies a set of corrupted
attribute authorities . The challenger generates the
public keys by querying the setup oracle, and generates the
secret keys by querying the secret key generation oracle. For
uncorrupted authorities in , the challenger sends only
the public keys to the adversary. For corrupted authorities in
, the challenger sends both public keys and secret keys to the

adversary.
Phase 1: The adversary makes secret key queries by

submitting pairs to the challenger, where
is a set of attributes belonging

to several uncorrupted s. The challenger gives the corre-
sponding secret keys to the adversary. The adversary
also makes update key queries by submitting a set of attributes

. The challenger gives the corresponding update keys to
the adversary.
Challenge: The adversary submits two equal length mes-

sages and . In addition, the adversary gives a challenge
access structure which must satisfy the following con-
straints. We let denote the subset of rows of labeled by
attributes controlled by corrupted s. For each , we let

denote the subset of rows of labeled by attributes that
the adversary has queried. For each , we require that the sub-
space spanned by must not include (1,0, ,0). In other
words, the adversary cannot ask for a set of keys that allow de-
cryption, in combination with any keys that can obtained from

corrupted s. The challenger then flips a random coin , and
encrypts under the access structure . Then, the ci-
phertext is given to the adversary.
Phase 2: The adversary may query more secret keys and

update keys, as long as they do not violate the constraints
on the challenge access structure and the following
constraints: None of the updated secret keys (generated by the
queried update keys and the queried secret keys)3 is able to
decrypt the challenged ciphertexts. In other words, the adver-
sary is not able to query the update keys that can update the
queried secret keys to the new secret keys that can decrypt the
challenge ciphertext.
Guess: The adversary outputs a guess of .
The advantage of an adversary in this game is defined as

.
Definition 3: DAC-MACS is secure against static corruption

of authorities if all polynomial time adversaries have at most a
negligible advantage in the above security game.
Definition 4: DAC-MACS is collusion resilience if no poly-

nomial time adversaries can decrypt the data by combining at-
tributes of different users together, when each individual user
cannot decrypt the data only with its own attributes.

III. DAC-MACS: DATA ACCESS CONTROL FOR
MULTIAUTHORITY CLOUD STORAGE

This section first gives an overview of our scheme. Then, we
describe DAC-MACS which consists of five phases.

A. Overview

Although the existing multiauthority CP-ABE scheme [10]
proposed by Lewko and Waters has high policy expressiveness
and has been extended to support attribute revocation in [12],
it still cannot be applied to access control for multiauthority
cloud storage systems due to the inefficiency of decryption and
revocation. Thus, the main challenge is to construct a new un-
derlying multiauthority CP-ABE scheme that supports efficient
decryption and revocation.
To design a multiauthority CP-ABE scheme, the most chal-

lenging issue is how to tie different secret keys together but still
prevent the collusion attack. Similar to [7], in DAC-MACS, we
separate the authority into a global certificate authority (CA)
and multiple attribute authorities ( s). The CA sets up the
system and assigns a global user identity to each user and
a global authority identity to each attribute authority. The
global unique can tie secret keys issued by different s to-
gether for decryption, and the global unique can distinguish
attributes issued by different s. Thus, by using and ,
the collusion attack can be resisted. However, different from [7],
the CA in DAC-MACS is not involved in any attribute man-
agement and the creation of secret keys reflecting the user’s at-
tributes. DAC-MACS also requires all the s to generate their
own public keys which can be used to encrypt data together with
the global public parameters, instead of only using the system
unique public key for data encryption. This solves the security
drawback in [7], i.e., it prevents the CA from decrypting the
ciphertexts.

3There is another reason that makes the queried secret keys cannot decrypt
the challenge ciphertext. That is at least one of the attributes in the previous
queried secret keys may be not in the current version.
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To achieve efficient decryption on the user, we propose a
token-based decryption outsourcing method. We apply the de-
cryption outsourcing idea from [12] and extend it to multiple
authority systems by letting the CA generate a pair of global se-
cret key and global public key for each legal user in the system.
During the decryption, the user submits its secret keys issued by
s to the server and asks the server to compute a decryption

token for the ciphertext. The user can decrypt the ciphertext by
using the decryption token together with its global secret key.
To solve the attribute revocation problem, we assign a ver-

sion number for each attribute, such that for each attribute revo-
cation, only those components associated with the revoked at-
tribute in secret keys and ciphertexts need to be updated. When
an attribute is revoked from a user, the corresponding will
generate a new version key for this revoked attribute, and com-
putes an update key containing a Ciphertext Update Key
and several user’s Key Update Keys ( s). With the s,
each nonrevoked user can update its secret key to the current
version, while the revoked user cannot update its secret key even
using other users’ update keys, since each is associated
with the (Backward Security). The ciphertexts can also be
updated to the current version with the , such that the newly
joined users who have sufficient attribute are also able to decrypt
the previous published data (Forward Security). Moreover, all
the users only need to hold the latest secret key, rather than all
the previous secret keys. To improve the efficiency, we dele-
gate the workload of ciphertext update to the server by using
the proxy re-encryption method.

B. System Initialization

This phase consists two steps: CA Setup and Setup.
1) CA Setup: Let and denote the set of attribute au-

thorities and the set of users in the system respectively. Let
and be the multiplicative groups with the same prime order
and be the bilinear map. Let be the gen-

erator of . Let be a hash function such that
the security is in the random oracle.
The CA runs the CA setup algorithm, which takes a security

parameter as input. The CA first generates a pair of signature
and verification key . Then, it chooses a random
number as the master key of the system and com-
pute the system parameter as

The CA accepts both User Registration and AA Registration:
• User Registration
Every user should register itself to the CA during the
system initialization. The CA runs the user registration
algorithm which takes the system parameter and
the user information as inputs. If the user is legal in the
system, it assigns a global user identity to this user,
and generates the global public key
and the global secret key by randomly
choosing two numbers . The CA also
generates a certificate which contains an item

. Then, the CA sends the
global public/secret key pair and the
certificate to user .

• AA Registration

Each should also register itself to the CA during the
system initialization. The CA runs the registration al-
gorithm by taking the information of as input.
If the is a legal authority in the system, the CA first
assigns a global authority identity to it. Then, the CA
sends both its verification key and the system param-
eter to this .

2) Setup: Each runs the setup al-
gorithm . Let denote the set of all attributes man-
aged by this authority . It chooses three random numbers

as the secret authority key .
For each attribute , the authority generates a public at-
tribute key as

by implicitly choosing an attribute version key as .
The also computes the public authority key as

All the public attribute keys and public authority keys are pub-
lished on the public bulletin board of .

C. Secret Key Generation by s

For every user , each first authen-
ticates whether this user is a legal user by verifying its certifi-
cate by using the verification key . If the user is not legal,
it aborts. Otherwise, the assigns a set of attributes to
this user according to its role or identity in its administration do-
main. Then, the runs the secret key generation algorithm

to generate the user’s secret key .
The algorithm takes as inputs the secret authority key ,

the system parameter , the set of public attribute keys
, a set of attributes that describes the secret

key, and the certificate of user . It chooses a random number
and computes as

where and .

D. Data Encryption by Owners

Before outsourcing data into the cloud, the owner encrypts
the data by running the data encryption algorithm . It
takes as inputs the system parameter , a set of public keys

from the involved authority set , a set of public

attribute keys , the data and an access struc-
ture over all the selected attributes from the involved
s. Let be a matrix, where denotes the total number

of all the attributes. The function associates rows of to
attributes.
The algorithm first divides the data into several data com-

ponents as according to the logic gran-
ularities. For example, the personal data may be divided into
{name, address, security number, employer, salary}. It then en-
crypts data components with different symmetric content keys

by using symmetric encryption methods, where
is used to encrypt .
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Then, it defines an access structure and encrypts each
content key under this access structure. For
simplicity, the rest of this paper only considers one component
and one content key . The encryption algorithm chooses

a random encryption exponent and chooses a random
vector , where are used to
share the encryption exponent . For to , it computes

, where is the vector corresponding to the -th
row of . Then, it randomly chooses and
computes the ciphertext as

In real systems, if the data is divided into compo-
nents, the ciphertext also consists of components

.

E. Data Decryption by Users (With the Help of Cloud)

All the legal users in the system can freely query any inter-
ested ciphertexts from the cloud server. But only when the user’s
attributes satisfy the access structure embedded in the cipher-
text, he/she is able to decrypt the content keys and further use
them to decrypt the data. This phase consists of two steps: Token
Generation by Cloud Server and Data Decryption by Users
1) Token Generation by Cloud Server: The user

sends its secret keys to the server and asks for a
decryption token for the ciphertext . Only when the attributes
the user possesses satisfy the access structure defined in the
ciphertext , the server can successfully compute the correct
decryption token .
The server runs the token generation algorithm ,

which takes as inputs the ciphertext (which contains an
access structure ), user’s global public key and a set
of user’s secret keys . Let be the
whole index set of all the attributes involved in the ciphertext,
where is the index subset of the attributes
from the , defined as . Let

be the number of s involved in the ciphertext. It
chooses a set of constants and reconstructs the
encryption exponent as if are valid shares
of the secret according to .
The algorithm computes the decryption token as

It outputs the decryption token for the ciphertext and
sends it to the user .

2) Data Decryption by Users: Upon receiving this decryp-
tion token , the user can use it to decrypt the ciphertext
together with its global secret key as

Then, the user can use the content key to further decrypt the
data as

F. Efficient Attribute Revocation

Suppose an attribute of the user is revoked from the
. The attribute revocation includes three phases: Update

Key Generation by s, Secret Key Update by Nonrevoked
Users and Ciphertext Update by Cloud Server. The secret key
update can prevent the revoked user from decrypting the new ci-
phertexts which are encrypted by the new public attribute keys
(Backward Security). The ciphertext update can also guarantee
that the newly joined user who have sufficient attributes can still
access the previous published data (Forward Security).
1) Update Key Generation by s: The corresponding au-

thority runs the update key generation algorithm
to compute the update keys. The algorithm takes as inputs the
secret authority key , the current attribute version key
and the user’s global public keys . It generates a new at-
tribute version key . It first calculates the Attribute
Update Key as , and then applies it to
compute the user’s Key Update Key as

and the Ciphertext Update Key as

Then, the updates the public attribute key of the revoked
attribute as and broadcasts a message
for all the owners that the public attribute key of is updated.
Then, all the owners can get the new public attribute key from
the public board of .
2) Secret Key Update by Nonrevoked Users: For each non-

revoked user who holds the revoked at-
tribute , the sends the corresponding user’s key update
key to it. Upon receiving , the user runs
the key update algorithm to update its secret key as

Note that each is associated with the , so that they
are distinguishable for different nonrevoked users. Thus, the re-
voked user cannot use any other user’s update keys to update
its secret key.
3) Ciphertext Update by Cloud Server: The sends a

ciphertext update key to the server. Upon receiving
the , the server runs the ciphertext update algorithm

to update all the ciphertexts which are associated
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TABLE I
COMPREHENSIVE COMPARISON OF CP-ABE WITH ATTRIBUTE REVOCATION SCHEMES

: The decryption computation on the user; : The server is fully trusted; : The server is semitrusted.

with the revoked attribute . It takes inputs as the current
ciphertext and the . It only needs to update several
components of the ciphertext, which are associated with the
. The new ciphertext is published as

DAC-MACS requires to update only a few components
which are associated with the revoked attribute, while the other
components are not changed. This can greatly improve the
efficiency of attribute revocation.
The ciphertext update not only can guarantee the forward se-

curity of the attribute revocation, but also can reduce the storage
overhead on users (i.e., all the users only need to hold the latest
secret key, rather than to keep records on all the previous secret
keys).

IV. ANALYSIS OF DAC-MACS

This section provides a comprehensive analysis of
DAC-MACS, followed by security and performance analysis.

A. Comprehensive Analysis

Let be the size of element in the groups with the prime
order . Let be the total number of attributes in a ciphertext
and be the total number of attributes of a user. Let denote
the number of users in the system. For the revoked attribute , let

be the number of nonrevoked users who hold the revoked
attribute and let be the number of ciphertexts which contain
the revoked attribute.
Table I shows the comparison among our DAC-MACS and

two existing schemes, all of which relied on the ciphertext re-en-
cryption to achieve the attribute revocation. From the table, we
can see that DAC-MACS incurs less computation cost for the
decryption on the user and less communication cost for the re-
vocation. In DAC-MACS, the attribute revocation is controlled
and enforced by each independently, but the ciphertexts
are updated by the semitrusted server, which can greatly reduce
the workload on owners. For the security of attribute revoca-
tion, DAC-MACS can achieve both forward security and back-
ward security. The cloud server in our system is required to be

semitrusted. Even if the cloud server is not semitrusted in some
scenarios, the server will not update the ciphertexts correctly. In
this situation, the forward security cannot be guaranteed, but our
system can still achieve the backward security, i.e., the revoked
user cannot decrypt new ciphertexts that requires the revoked
attributes for decryption.

B. Security Analysis

Under the security model we defined in Section II, we prove
that DAC-MACS is provable secure and collusion resilience, as
concluded in the following theorems:
Theorem 1: When the decisional q-parallel BDHE assump-

tion holds, no polynomial time adversary can selectively break
DAC-MACS with a challenge matrix of size , where

.
Proof: Suppose we have an adversary with nonneg-

ligible advantage in the selective security game
against our construction and suppose it chooses a challenge
matrix with the dimension at most columns. In the
security game, the adversary can query any secret keys and
update keys that cannot be used for decryption in combina-
tion with any keys it can obtain from the corrupted s. With
these constraints, the security game in multiauthority systems
can be treated equally to the one in single authority systems.
Similarly, we can build a simulator that plays the decisional
q-parallel BDHE problem with nonnegligible advantage. The
detailed proof is described in the full version of this paper [15].
Theorem 2: DAC-MACS is secure against the collusion at-

tack of users.
Proof: In DAC-MACS, each user in the system is assigned

with a global unique identity , and all the secret keys issued
to the same user from different s are associated with the
of this user. Thus, it is impossible for two or more users to col-
lude and decrypt the ciphertext. Moreover, due to the unique
of each , all the attributes are distinguishable, even though
some s may issue the same attribute. This can prevent the
user from replacing the components of a secret key issued by
an with those components from other secret keys issued by
another .
Privacy-Preserving Guarantee: Due to the decryption out-

sourcing, the server can get the users’ secret keys. However, the
server still cannot decrypt the ciphertext without the knowledge
of the users’ global secret keys. Moreover, the ciphertext update
is done by using the proxy re-encryption method, thus the server
does not need to decrypt the ciphertext.

C. Performance Analysis

We conduct the performance analysis between our
DAC-MACS and Ruj’s DACC scheme under the metrics
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Fig. 2. Comparison of encryption, decryption, and ciphertext re-encryption/update time.

TABLE II
COMPARISON OF STORAGE OVERHEAD

: total number of ciphertexts stored on the cloud server;

: number of ciphertexts contain the revoked attribute ;

: total number of attributes in the ciphertext.

of Storage Overhead, Communication Cost and Computation
Cost.
1) Storage Overhead: The storage overhead is one of the

most significant issues of the access control scheme in cloud
storage systems. Suppose there are s in the system. Let
be the element size in the . Let and

denote the total number of attributes managed by and the
number of attributes assigned to the user from respec-
tively. We compare the storage overhead on each entity in the
system, as shown in Table II.
In DAC-MACS, the storage overhead on each con-

sists of the version number of each attribute and the secret
authority key, while in DACC it consists of secret keys for
all the attributes. The public parameters contribute the main
storage overhead on the owner. Besides, DACC also requires
the owner to hold the encryption secret for every ciphertext
in the system, because the owner is required to re-encrypt the
ciphertexts. This incurs a heavy storage overhead on the owner,
especially when the number of ciphertext is large in the system.
The storage overhead on each user in DAC-MACS comes
from the global secret key issued by the CA and the secret
keys issued by all the s. However, in DACC, the storage
overhead on each user consists of both the secret keys issued
by all the s and the ciphertext components that associated
with the revoked attribute. That is because when the ciphertext
is re-encrypted, some of its components related to the revoked
attributes should be sent to each nonrevoked user who holds the
revoked attributes. The ciphertexts contribute the main storage
overhead on the server (here we do not consider the component
of data encrypted by symmetric content keys).
2) Communication Cost: The communication cost of

the normal access control is almost the same between our
DAC-MACS and Ruj’s DACC scheme. Here, we only compare
the communication cost of attribute revocation, as shown in
Table III. It is easily to find that the communication cost of
attribute revocation in Ruj’s scheme is linear to the number of
ciphertextswhich contain the revoked attributes.Due to the large

TABLE III
COMPARISON OF COMMUNICATION COST FOR ATTRIBUTE

REVOCATION

is the number of nonrevoked users holding ;

is the number of ciphertexts containing .

number of ciphertext in cloud storage system, Ruj’s scheme
incurs a heavy communication cost for attribute revocation.
3) Computation Cost: We simulate the computation time of

encryption, decryption and ciphertext re-encryption/update in
our DAC-MACS and Ruj’s DACC scheme. We do the sim-
ulation on a Linux system with an Intel Core 2 Duo CPU at
3.16 GHz and 4.00 GB RAM. The code uses the Pairing-Based
Cryptography library version 0.5.12 to simulate the access con-
trol schemes. We use a symmetric elliptic curve -curve, where
the base field size is 512-bit and the embedding degree is 2. The
-curve has a 160-bit group order, which means is a 160-bit
length prime. All the simulation results are the mean of 20 trials.
We compare the computation efficiency of both encryption

and decryption in two criteria: the number of authorities and the
number of attributes per authority, as shown in Fig. 2. Fig. 2(a)
describes the comparison of encryption time on the owner versus
the number of s, where the involved number of attributes
from each is set to be 10. Fig. 2(b) gives the comparison of
encryption time on the owner versus the number of attributes
from each , where the involved number of s is set to be
10. Suppose the user has the same number of attributes from
each . Fig. 2(c) shows the comparison of decryption time
on the user versus the number of s, where the number of
attributes the user holds from each is set to be 10. Fig. 2(d)
describes the comparison of decryption time on the user versus
the number of attributes the user holds from each , where
the number of authority for the user is fixed to be 10. Fig. 2(e)
gives the comparison of ciphertext re-encryption/update versus
the number of revoked attributes appeared in the ciphertext.
The simulation results show that our DAC-MACS incurs less
computation cost on the encryption of owners, the decryption
of users and the re-encryption of ciphertexts.

V. EXTENSIVE DAC-MACS

In DAC-MACS, there is a security assumption that all the
nonrevoked users will not give the received update keys to the
revoked user. However, this is a strong assumption, and in prac-
tical the revoked user may collude with other users to obtain the
update keys. This section first proposes an extensive data ac-
cess control scheme (EDAC-MACS), and then give the security
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analysis to show that EDAC-MACS can achieve the same secu-
rity goal without this assumption.

A. EDAC-MACS

If we remove this assumption, the backward security in DAC-
MACSwill no longer be guaranteed. That is when the adversary
(the revoked user) corrupted any , he/she could obtain all

the users’ secrets , and use it to transfer the other user’s
key update key to its own one as

Then, the adversary can use it to update his secret key to
the latest version by running the secret key update algorithm

.
To address this security issue, wemodify the secret key gener-

ation algorithm by padding a new piece to the .
It generates the user’s secret key as

where and .
The encryption algorithm is the same as

DAC-MACS, but during the data decryption, the decryp-
tion token is generated by the new decryption token
generation algorithm as

Correctness: We observe that

For each , suppose , it computes

Then, it computes

The decryption algorithm is the same as DAC-MACS.

During the attribute revocation, the authority also needs to
first generate the update keys. The ciphertext update key
is the same as the one in DAC-MACS. However, the user’s key
update key is generated as

B. Security Analysis

We conclude the security of EDAC-MACS as the following
two theorems:
Theorem 3: In EDAC-MACS, the revoked user has no

chance to update its secret key, even if it can corrupt some
s (not the corresponding to the revoked attribute) and

collude some nonrevoked users.
Proof: In EDAC-MACS, each key update key is associated

with the user’s identity . And the item in the
secret key prevents users from updating their secret keys with
the other user’s update key, since is only known by the
and kept secret to all the users.
Theorem 4: When the decisional q-parallel BDHE assump-

tion holds, no polynomial time adversary can selectively break
EDAC-MACS with a challenge matrix of size , where

.
Proof: Based on the Theorem 3, the security proof of

EDAC-MACS is similar to DAC-MACS as Theorem 1. The
main difference is how to simulate the new secret keys in
EDAC-MACS. The detailed security proof is described in
Appendix A.

VI. RELATED WORK

Cryptographic techniques are well applied to access control
for remote storage systems [16]–[18]. To prevent the untrusted
servers from accessing sensitive data, traditional methods [19],
[20] usually encrypt the data and only the users who hold valid
keys can decrypt. Then, the data access control becomes the
matter of key distribution. Although these methods can provide
secure data access control, the key management is very compli-
cated when more users are in the system. Data owners also have
to stay online all the time to deliver keys to new users.Moreover,
for each data, there are multiple copies of ciphertexts for users
with different keys, which will incur high storage overhead on
the server. Some methods [21] deliver the key management and
distribution from data owners to the remote server under the as-
sumption that theserver is trusted.However, the server isnot fully
trusted in cloud storage systems and thus these methods cannot
be applied to data access control for cloud storage systems.
Attribute-based Encryption (ABE) is a promising technique

that is designed for access control of encrypted data. After
Sahai and Waters introduced the first ABE scheme [22], Goyal
et al. [23] formulated the ABE into two complimentary forms:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE
(CP-ABE). There are a number of works used ABE to realize
fine-grained access control for outsourced data [13], [24], [25].
These schemes require a trusted authority to manage all the
attributes in the system and issue secret keys to users. Since
the authority can decrypt all the encrypted data, it becomes
a vulnerable security point for the system. Moreover, the
authority may become the performance bottleneck in the large
scale cloud storage systems.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 13,2022 at 23:57:28 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DAC-MACS: EFFECTIVE DATA ACCESS CONTROL FOR MULTIAUTHORITY CLOUD STORAGE SYSTEMS 1799

Some cryptographic methods are proposed for the multiau-
thority ABE problem [7]–[10], [26], [27], where there are mul-
tiple authorities coexist and users may have attributes frommul-
tiple authorities. However, some of them [7], [8] still require a
global authority. Lin et al. [26] proposed a decentralized scheme
based on threshold mechanism. In this scheme, the set of author-
ities is predetermined and it requires the interaction among the
authorities during the system setup. In [10], Lewko et al. pro-
posed a new comprehensive scheme, which does not require any
central authority. However, they did not consider attribute revo-
cation problem.
There are a number of works about the revocation in ABE

systems in the cryptography literature [2]–[6]. However, these
methods either only support the user level revocation or rely on
the server to conduct the attribute revocation. Moreover, these
attribute revocationmethods are designed only for ABE systems
with single authority. Ruj et al. [14] designed a DACC scheme
and proposed an attribute revocation method for the Lewko and
Waters’ decentralized ABE scheme. However, their attribute re-
vocation method incurs a heavy communication cost since it re-
quires the data owner to transmit a new ciphertext component
to every nonrevoked user. Li et al. [28] proposed an attribute
revocation method for multiauthority ABE systems, but their
methods is only for KP-ABE systems.
Green et al. [12] proposed two ABE schemes that outsource

the decryption to the server. In their schemes, the authority sep-
arate the traditional secret key into a user secret key and a trans-
formation key. However, their schemes are designed only for
the single authority systems and do not support for the multiau-
thority systems. That is because each authority may generate
different user’s secret key, such that the transformation keys
cannot be combined together to transform the ciphertext into
a correct intermediate value.

VII. CONCLUSION

In this paper, we proposed an effective data access control
scheme for multiauthority cloud storage systems, DAC-MACS.
We also constructed a new multiauthority CP-ABE scheme,
in which the main computation of decryption is outsourced to
the server. We further designed an efficient attribute revocation
method that can achieve both forward security and backward
security.
We also removed the security assumption that all the nonre-

voked users will not reveal their received key update keys to the
revoked user. We further proposed an extensive DAC-MACS,
which is secure under weaker security assumptions. Although
this work is for multiauthority cloud storage systems, the tech-
niques designed in this paper can be applied into other appli-
cations, such as any remote storage systems, online social net-
works etc.

APPENDIX
PROOF OF THEOREM 4

Proof: Suppose we have an adversary with nonneg-
ligible advantage in the selective security game
against our construction and suppose it chooses a challenge ma-
trix with the dimension at most columns. In the se-
curity game, the adversary can query any secret keys and up-

date keys that cannot be used for decryption in combination
with any keys it can obtain from the corrupted s. With these
constraints, the security game in multiauthority systems can be
treated equally to the one in single authority systems. Therefore,
we can build a simulator that plays the decisional q-parallel
BDHE problem with nonnegligible advantage as follows.
Init: The simulator takes in the q-parallel BDHE challenge
, . The adversary gives the algorithm the challenge access
structure , where has columns.
Setup: The simulator runs the and algo-

rithm, and gives to the adversary. The adversary chooses a set
of of corrupted authorities, and reveals these to the
simulator. For each uncorrupted authority ,
the simulator randomly chooses
and implicitly sets by letting

Then, we describe how the simulator programs the random
oracle by building a table. Consider a call to , if
was already defined in the table, the oracle returns the same
answer as before. Otherwise, begin by choosing a random value
. Let denote the set of indices , such that . In

other words, all the row indices in the set match the same
attribute . The simulator programs the oracle as

Note that if then we have . Also note that
the response from the oracle are distributed randomly due to the

value.
The simulator also randomly chooses two numbers
. Then, it generates the public key of each uncorrupted au-

thority as

The public attribute keys can be simulated by randomly
choosing a version number as

The simulator assigns a user identity to the adversary and
chooses two random numbers . Then, it sets

and implicitly sets
by setting

The simulator then sends the global public/secret key pairs
to the adversary.

Phase 1: In this phase, the simulator answers secret key
queries and update key queries from the adversary. Suppose
the adversary makes secret key queries by submitting pairs

to the simulator, where is a set of attributes
belonging to an uncorrupted authority . Suppose does
not satisfy together with any keys that can obtain from
corrupted authorities.
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The simulator finds a vector ,
such that and for all where we have that

. By the definition of a LSSS, such a vector must
exist, since does not satisfy .
The simulator then implicitly defines by randomly choosing

a number as

by setting

The simulator then constructs as

From the definition of , we find that contains a
term of , which will cancel out with the unknown term
in when creating . The simulator can calculate

In EDAC-MACS, a new piece is padded to the component
in the secret key. Fortunately, the new piece can

be easily simulated as . Thus, for the calculation of
, if is used in the access structure, the

simulator computes as follows.

If the attribute is not used in the access structure.
That is there is no such that . For those attributes,
we can let

Towards update key queries, suppose the adversary submits
pairs of . If the attribute has a new version
number , and is an nonrevoked users, it then sends back
the key update key as

Otherwise, it responses “ ”.
Challenge: In this phase, the simulator programs the chal-

lenge ciphertext. The adversary gives two messages to
the simulator. The simulator flips a coin . It creates

and , .
The difficult part is to simulate the values since this con-

tains terms that must be canceled out. However, the simulator
can choose the secret splitting, such that these can be canceled

out. Intuitively, the simulator will choose random
and share the secret using the vector

It also chooses random values .
For , let be the set of all such that

. That is the set of all other row indices that have
the same attribute as row . The challenge ciphertext compo-
nents can be generated as

From the vector , we can construct the share of the secret as

Then, we can simulate the as

Phase 2: Same as Phase 1.
Guess: The adversary will eventually output a guess of
. If , the simulator then outputs 0 to show that

; otherwise, it outputs 1 to indicate that it believes
is a random group element in .
When is a tuple, the simulator gives a perfect simu-

lation so we have that
. When is a random group element the mes-

sage is completely hidden from the adversary and we have
at .
Therefore, can play the decisional q-parallel BDHE game

with nonnegligible advantage.
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