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Abstract—Compressive sensing (CS) can reduce the number of data transmissions and balance the traffic load throughout networks.

However, the total number of transmissions for data collection by using pure CS is still large. The hybrid method of using CS was

proposed to reduce the number of transmissions in sensor networks. However, the previous works use the CS method on routing trees.

In this paper, we propose a clustering method that uses hybrid CS for sensor networks. The sensor nodes are organized into clusters.

Within a cluster, nodes transmit data to cluster head (CH) without using CS. CHs use CS to transmit data to sink. We first propose an

analytical model that studies the relationship between the size of clusters and number of transmissions in the hybrid CS method, aiming

at finding the optimal size of clusters that can lead to minimum number of transmissions. Then, we propose a centralized clustering

algorithm based on the results obtained from the analytical model. Finally, we present a distributed implementation of the clustering

method. Extensive simulations confirm that our method can reduce the number of transmissions significantly.

Index Terms—Wireless sensor networks, compressive sensing, data collection, clustering

Ç

1 INTRODUCTION

IN many sensor network applications, such as environ-
ment monitoring systems, sensor nodes need to collect

data periodically and transmit them to the data sink
through multihops. According to field experiments, data
communication contributes majority of energy consumption
of sensor nodes [1]. It has become an important issue to
reduce the amount of data transmissions in sensor net-
works. The emerging technology of compressive sensing
(CS) [2], [3], [4] opens new frontiers for data collection in
sensor networks [5], [6], [7], [8], [9], [10], [11], [12] and target
localization in sensor networks [13]. The CS method can
substantially reduce the amount of data transmissions and
balance the traffic load throughout the entire network.

The basic idea of CS works is as follows, as shown in
Fig. 1. Suppose the system consists of one sink node and N
sensor nodes for collecting data from the field. Let x denote
a vector of original data collected from sensors. Vector x
has N elements, one for each sensor. x can be represented
by �s, i.e., x ¼ �s, where � is an N �N transform basis,
and s is a vector of coefficients. If there are at most k
(k� N) nonzero elements in s, x is called k-sparse in the �
domain. When k is small, instead of transmitting N data to
the sink, we can send a small number of projections of x to
the sink, that is, y ¼ �x, where � is an M �N (M � N)
random matrix (called the measurement matrix) and y is
a vector of M projections. At the sink node, after collecting

y, the original data x can be recovered by using ‘1-norm
minimization [14], [15] or other heuristic algorithms, such
as orthogonal matching pursuit [16]. More background of
CS and related works can be found in Section 1 of the
online supplemental material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.90.

In data gathering without using CS, the nodes close to
tree leaves relay fewer packets for other nodes, but the
nodes close to the sink have to relay much more packets. By
using CS in data gathering, every node needs to transmit M
packets for a set of N data items. That is, the number of
transmissions for collecting data from N nodes is MN ,
which is still a large number. Hybrid approaches were
proposed in [8], [10]. In the hybrid method, the nodes close
to the leaf nodes transmit the original data without using
the CS method, but the nodes close to the sink transmit data
to sink by the CS technique. Xiang et al. [10] applied hybrid
CS in the data collection and proposed an aggregation tree
with minimum energy consumption. The previous works
use the CS method on routing trees. Since the clustering
method has many advantages over the tree method [17],
[18], [19], [20], [21], [22], such as fault tolerance and traffic
load balancing, we use the CS method on the clustering in
sensor networks. The clustering method generally has
better traffic load balancing than the tree data gathering
method. This is because the number of nodes in clusters can
be balanced when we divide clusters. In addition, the
previous works ignored the geographic locations and node
distribution of the sensor nodes. While in sensor networks,
the information of node distribution can help the design of
data gathering method that uses less data transmissions
[17], [18], [19], [20], [21], [22].

In this paper, we propose a clustering method that uses
the hybrid CS for sensor networks. The sensor nodes are
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organized into clusters. Within a cluster, nodes transmit
data to the cluster head (CH) without using CS. A data
gathering tree spanning all CHs is constructed to transmit
data to the sink by using the CS method. One important
issue for the hybrid method is to determine how big a
cluster should be. If the cluster size is too big, the number of
transmissions required to collect data from sensor nodes
within a cluster to the CH will be very high. But if the
cluster size is too small, the number of clusters will be large
and the data gathering tree for all CHs to transmit their
collected data to the sink will be large, which would lead to
a large number of transmissions by using the CS method. In
this regard, we first propose an analytical model that
studies the relationship between the size of clusters and
number of transmissions in the hybrid CS method, aiming
at finding the optimal size of clusters that can lead to
minimum number of transmissions. Then, we propose a
centralized clustering algorithm based on the results
obtained from the analytical model. Finally, we present a
distributed implementation of the clustering method.

Extensive simulations have been conducted. When the
number of measurements is 10th of the number of nodes in
the network, the simulation results show that our method
can reduce the number of transmissions by about 60 percent
compared with the clustering method without using CS.
Meanwhile, our method can reduce the number of
transmissions by 50 percent compared with the data
collection method using the shortest path tree (SPT). In
addition, our method can reduce the number of transmis-
sions up to 30 percent compared with the data collection
method using SPT with the hybrid CS. Even for the
nonhomogenous networks in the irregular sensor field,
our method can significantly reduce data transmissions
compared with these data collection methods. Our simula-
tion results demonstrate that the proposed distributed
method is efficient in terms of the low communication cost
and effective in reducing the number of transmissions.

The remainder of this paper is organized as follows:
Section 2 presents an overview of the clustering method by
using hybrid CS for data collection. Section 3 presents an
analytical model for analyzing the relationship between the
size of clusters and the number of transmissions, and
determining the optimal cluster size. Section 4 presents a
centralized algorithm for sensor nodes clustering with
minimum number of transmissions. Section 5 presents a
distributed clustering algorithm and its implementations.

The simulations and performance evaluations are presented
in Section 6. Section 7 concludes the paper.

2 OVERVIEW OF SENSOR NODES CLUSTERING FOR

HYBRID COMPRESSIVE SENSING

We first make the following assumptions:

. The sensor nodes are uniformly and independently
distributed in a sensor field. Such a deployment can be
modeled as a Poisson point process [21], [22], [23], [24].

. All sensor nodes have the same fixed transmission
power and transmission rate.

. Each sensor node is aware of its own geographic
location, which can be obtained via attached GPS or
some other sensor localization techniques [25], [26].
The location information is used in the distributed
implementation.

In our method, sensor nodes are organized into clusters,
and each cluster has a cluster head, represented by the solid
square as shown in Fig. 2. Sensor nodes in each cluster
transmit their original data to the CH without using CS. We
assume each CH knows the projection vectors (in measure-
ment matrix �) of all nodes within its cluster. In real
systems, the measurement coefficient �ij can be generated
using a pseudorandom number generator seeded with the
identifier of the node vj [5]. Thus, given the identifiers of the
nodes in the network, the measurement matrix can be easily
constructed at CHs or the sink locally. The measurement
matrix � can be decomposed into submatrices, one for each
cluster. Let �Hi denote the submatrix for ith cluster. For ith
cluster, let CHi denote the cluster head and xHi denote the
data vector of the cluster. The CHi is able to compute the
projections of all data xHi collected from the nodes in its
cluster on the submatrix, that is �HixHi . The CHi generates
M projections from the data within its cluster by using the
CS technique. The value of M is determined by the number
of nodes N and the sparsity level of the original data [5]. It
then forwards them to the sink in M rounds along a
backbone tree that connects all CHs to the sink. Taking the
sensor nodes in Fig. 2 as an example, all sensors nodes are
divided into four clusters. The four cluster heads, CH1, CH2,
CH3, and CH4, are connected by a backbone tree to the sink.
Data vector x can be decomposed as ½xH1 xH2 xH3 xH4 �T ,
and matrix � can be written as ½�H1 �H2 �H3 �H4 � .
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Fig. 1. Data collection with the pure CS method in the tree structure.

Fig. 2. The hybrid CS data collection method in cluster structure.
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As shown in (1), the projections of all data in the network
on the measurement matrix � is the sum of the projections
generated from the clusters. Thus in each round, the CH
aggregates its own projection and the projections received
from its children CHs in the same round and forwards it to
the sink following the backbone tree. When the sink
receives all M rounds of projections from CHs, the original
data for all sensor nodes can be recovered.

There are two levels of transmissions in our clustering
method using the hybrid CS: intracluster transmissions
that do not use the CS technique and intercluster
transmissions that use the CS technique. The data size in
intercluster transmissions is the same as the data in
intracluster transmissions. Thus, reducing the number of
transmissions can effectively reduce the energy consump-
tion of sensor nodes. For intracluster transmissions, we
simply let sensor nodes transmit their data to the CH
following the shortest path routing (in terms of number of
hops). For intercluster transmissions, we construct a
minimal cost (in terms of number of hops) backbone tree
that connects all CHs to the sink and transmit the data
projections along this backbone tree.

An important task of our method is to determine the
cluster size. As cluster size increases, the number of
intracluster transmissions would increase sharply. But when
decreasing the cluster size, the number of clusters would
increase and the number of intercluster transmissions would
increase. Thus, there exists an optimal cluster size that
minimizes the total number of data transmissions in the
hybrid CS method. Our task is to determine the optimal
cluster size and design a distributed clustering method, such
that the total number of transmissions is minimized.

3 ANALYSIS ON THE OPTIMAL CLUSTER SIZE

There are N sensor nodes uniformly and independently
distributed in a rectangle sensor field. Such a deployment
can be modeled as a Poisson point process. Let � denote the
density of the underlying Poisson point process. The
number of sensors located in a region with the area of A,
NðAÞ, follows the Poisson distribution with mean of �A, i.e.,
NðAÞ � Poið�AÞ. The assumption of uniform sensor dis-
tribution has been widely used in the performance analysis
of large-scale wireless sensor networks [21], [22], [23], [24].

There is a sink node s located at the corner of the sensor
field. We assume the coordinates of s are (0, 0), as shown in
Fig. 3. This is because the sink is usually placed outside of the
sensor field for easy installation. Our analysis can be easily
modified to suit the cases that the sink is not located at the
corner of the field. We assume that the transmission range of
sensor nodes is r. That is, any two sensors whose euclidian
distance is within r can communicate with each other.

The sensor field is partitioned into small grids of size

a� a as shown in Fig. 3. The edge length a of a grid is set

to rffiffi
2
p , so that any two nodes in a grid are within the

transmission range of each other. Our purpose is to divide

the sensor field into cluster-areas, such that nodes can be

organized into clusters. Suppose each cluster-area is a

square of size Da�Da. All nodes in a cluster-square form a

cluster as shown in Fig. 3. The largest feasible value DMAX is

DMAX ¼
ffiffiffiffiffiffiffiffi
N

�a2

r
: ð2Þ

The value of D lies in the interval ½1; DMAX�, and it will be

determined later through our analysis. Given the poisson

distribution with density �, there are �D2a2 sensor nodes in

each cluster on average. Thus, the sensor field has N
�D2a2

clusters on average.
In our hybrid CS method with the cluster structure, the

data transmission from the sensor nodes to the CH does not

use CS. The sensor nodes within a cluster transmit their data

to the CH via the shortest path routing. We assume the CH

is located at the center of the cluster-square, which is the

case that produces the minimal number of transmissions to

collect data within the cluster when nodes are uniformly

distributed. Considering the small grids inside a cluster-

square as shown in Fig. 4, the nodes in the center grid that

contains the CH take only one hop to transmit their data to

the CH. The nodes in the next layer of grids around the

center grid take two hops to reach the CH, and the nodes in

the third layer of grids are three hops away from the CH.

Following this pattern, the nodes in hth layers take h hops to

transmit data to the CH. The number of grids in the hth

layer is 8ðh� 1Þ for h � 2. Since the sensor nodes are

distributed uniformly with the density �, the number of

nodes in each grid is �a2. Thus, the number of data

transmissions for all sensor nodes within a cluster to

transmit their data to the CH is

1þ
XDþ1

2

h¼2

8ðh� 1Þ � h

0
@

1
A � �a2 ¼ D3 �D

3
þD2

� �
� �a2: ð3Þ

Since the total number of clusters in the system is N
�D2a2 , the

total intracluster transmissions of all clusters, without using

CS, are
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Fig. 3. The sensor field is partitioned into small grids with size a� a. All
nodes in a cluster-square of the size Da�Da form a cluster, where the
cluster head (CH) is located at the center.
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The number of intracluster transmissions calculated
above is an upper bound. Since in each grid, the nodes
close to the inner layer take one hop less than the nodes
close to the outer layer to transmit data to the CH.

To get the lower bound of the number of intracluster
transmissions, considering the small grids inside a cluster-
square as shown in Fig. 4, the nodes in the next layer of
grids around the center grid that contains the CH take one
hop to reach the CH, and the nodes in the third layer of
grids are two hops away from the CH. Following this
pattern, the nodes in hth layers take h� 1 hops to transmit
data to the CH. That is, each node takes 1 hop less than in
the analysis of the upper bound of intracluster transmis-
sions. Thus, the lower bound of the number of intracluster
transmissions is N less than that in (4) in total. That is,

Tintra ¼
D

3
� 1

3D

� �
�N: ð5Þ

From (5), we can see that with fixed clusters’ area, the
number of intracluster transmissions is proportional to the
number of nodes N , while with fixed N , it increases as
the edge length of cluster-square D increases.

In our hybrid CS method, data are compressed by using
CS at the CHs. The data projections generated at each CH
are forwarded to the sink in M rounds along a backbone
tree that connects all the CHs to the sink. We call CHs in
adjacent clusters neighboring CHs. In each round of
transmission, the projection of each CH is forwarded to its
neighboring CH via some intermediate relay nodes along
the routing tree. In our analytical model, we assume that
backbone tree is structured as shown in Fig. 3: 1) all CHs
transmit data to their left-neighbor CH until reaching the
left most cluster; 2) for clusters at the left most column, CHs
transmit data to down-neighbor CHs until reaching the left-
bottom cluster; and 3) the CH of the left-bottom cluster
transmits data to the sink.

It takes D hops to transmit a projection from its CH to a
neighboring CH. For the cluster at the left-bottom corner
(i.e., the cluster whose left-bottom corner is at (0, 0)), it takes
approximately D

2 hops to transmit a projection from the CH
to the sink. The projections of the same round generated
from different clusters are aggregated at CHs as they are
forwarded along the backbone tree. Thus, each intermediate
node on the backbone tree does M transmissions. Since the
number of clusters in the sensor field is N

�D2a2 , the total

number of intercluster transmissions with CS used for M
rounds is

Tinter ¼
N

�D2a2
� 1

� �
�D �M þD

2
�M

¼ NM
�a2
� 1

D
�M

2
�D:

ð6Þ

From (6), it can be observed that with fixed D, the number
of intercluster transmissions is proportional to the number
of projections M; with fixed M, the number of intercluster
transmissions decreases as D increases.

Our objective is to minimize total number of transmis-
sions of the hybrid CS method in cluster structure, which is
the sum of the intracluster transmissions and the inter-
cluster transmissions. That is,

T ¼ Tintra þ Tinter

¼ N

3
�M

2

� �
�Dþ NM

�a2
�N

3

� �
� 1

D

¼ N
3

1� 3M

2N

� �
�DþN

3

3M

�a2
� 1

� �
� 1

D

¼ c1 �Dþ c2 �
1

D
:

ð7Þ

Considering the above (7), T is a function of D, where D lies
in the interval ½1; DMAX�.

With different M, the optimal value of D to minimize T
is different. When M is less than 2

9N , the optimal value D	 is
calculated as

D	 ¼

ffiffiffiffiffiffiffiffiffi
3M
�a2�1

1�3M
2N

r
; M < 2

9N;

DMAX;
2
9N 
M 
 N:

8<
: ð8Þ

When M � 2
9N , and in the extreme case when M ¼ N , the

optimal value D	 is DMAX. That is, the sensors in the
network are organized to a single cluster, which is
degenerated into the optimal tree structure using hybrid
CS [10]. The detailed derivation of the optimal value D	 is in
Section 2 of the online supplemental material.

The optimal cluster size N	c of hybrid CS method in
cluster structure, in terms of the number of nodes in each
cluster, is

N	c ¼ �ðD	aÞ
2 ¼

3M��a2

1�3M
2N

; M < 2
9N;

N; 2
9N 
M 
 N:

(
ð9Þ

That means, when there are N	c nodes in each cluster, the
total number of transmissions in the clustering with hybrid
CS is minimized.

4 MINIMUM TRANSMISSION CLUSTERING

ALGORITHM

4.1 Overview of Centralized Clustering Algorithm

The sensor network is modeled by a graph G ¼ hV ;Ei,
where V consists of the sink node v0 and N sensor nodes. If
two nodes in V are within the communication range of each
other, then there is a link between the two nodes.

As the centralized algorithm, we assume the sink node
has the full knowledge of the network topology. That is, it
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Fig. 4. The intracluster transmissions in the cluster-square, where the
cluster head (CH) is located at the center.



knows the network graph G ¼ hV ;Ei. The sink will divide
the sensor nodes into clusters, choose a CH for each cluster,
and construct a backbone tree that connects all CHs to the
sink. After computing the clustering, the sink can broadcast
the clustering information to all sensor nodes and start data
collection subsequently.

From the theoretical analysis in the last section, we can
find the optimal cluster size N	c for a given number of N
sensor nodes uniformly distributed in a field. Thus, the
optimal number of clusters in the system is:

C ¼ N

N	c

� �
: ð10Þ

In our method, within a cluster, each sensor node
transmits its data to its designated CH via the shortest
path. The routes that sensor nodes use to send their data to
the CH form a shortest path tree in each cluster. The total
number of intracluster transmissions is the sum of the
distance of all sensor nodes to their CHs. Thus, the
clustering problem for minimizing intracluster transmis-
sions becomes a well-known k-median problem, that is to
find the locations to place C CHs in the network G ¼ hV ;Ei
such that the total distance from all sensor nodes to their
nearest CHs is minimized. The distance between two nodes
is defined as the number of hops of the shortest path
between them.

Data collected from sensor nodes is compressed by the
CS method at the CHs. The data projections generated at
each CH are forwarded to the sink in M rounds along the
backbone tree. At each CH in the backbone tree, it
aggregates its own data projection with the projections
received from other CHs by using the CS method and
forwards the aggregated projection upward toward the sink
along the tree. There are usually multihops between two
CHs. Thus, the problem of constructing a backbone tree that
connects all CHs to the sink and has the minimum number
of links in the tree is the well-known minimum Steiner tree
problem, which is NP-hard. We will use an efficient
heuristic method to construct the backbone tree.

4.2 Centralized Clustering Algorithm

In this section, we present the centralized clustering
algorithm. Given the network G ¼ hV ;Ei, our algorithm
has two major steps: 1) select C CHs from the set V of N
sensor nodes and divide the sensor nodes into C clusters
and 2) construct a backbone routing tree that connects all
CHs to the sink.

The k-median problem is NP-hard. A lot of heuristic
algorithms have been proposed to solve the k-median
problem [27], [28], [29]. We adopt an efficient method that
iteratively closes to the near-optimal solution. Our algo-
rithm starts from an initial set of CHs, which is randomly
selected. At each iteration, the algorithm proceeds follow-
ing steps:

1. Connect sensor nodes to their closest CHs. Ties
break arbitrarily.

2. For each cluster, choose a new CH, such that the sum
of the distances from all nodes in this cluster to the
new CH is minimized.

3. Repeat the above two steps until there is no more
change of the CHs.

This algorithm converges quickly. The simulations show
that it takes four or five iterations on average for the
algorithm to compute the CHs of clusters (see Section 4.3 of
the online supplemental material).

We use a minimum spanning tree (MST)-based method
to compute the backbone tree that connects all CHs and the
sink. Given a set U of CHs obtained from the above
algorithm, we introduce a graph GCH ¼ hVCH; ECHi, where
VCH consists of the sink node v0 and the set U of CHs.
There is an edge between any pair of nodes in VCH. That is,
the graph GCH is a complete graph. The distance of an edge
ðCHi;CHjÞ in ECH is the length of the shortest path
between CHi and CHj in G. Then, we compute the MST of
GCH, which spans all nodes in VCH. From this MST, we
obtain a backbone routing tree, where each edge in the
MST is its corresponding shortest path in G.

5 DISTRIBUTED IMPLEMENTATION

This section presents a distributed implementation of the
clustering method. We assume that 1) every sensor node
knows its geographic location. This location information can
be obtained via attached GPS or some other sensor
localization techniques [25], [26]; 2) the sink knows the area
of the whole sensor field, but does not need to know the
location information of all sensor nodes. This is a reasonable
assumption, since in most applications of the sensor
networks, the sink usually knows the area that has sensors
deployed for surveillance or environmental monitoring [30].

In our distributed algorithm, the sink divides the field
into C cluster-areas, calculates the geographic central point
of each cluster-area, and broadcasts the information to all
sensor nodes to elect CHs. The sensor node that is the
closest to the center of a cluster-area is selected to be the CH.
The CHs then broadcast advertisement messages to sensor
nodes to invite sensor nodes to join their respective clusters.

5.1 Calculating Central Points of Cluster-Areas

Given a sensor field and the number of cluster C to be
divided to, the sink needs to find out the central points of C
cluster-areas. We first divide the whole sensor field into
small grids, as shown in Fig. 5. Then, we place a virtual
node at the center of each grid to represent the grid. C
nodes in the grids will be chosen as the approximate central
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Fig. 5. An example of calculating the central points of cluster-areas: an
irregular sensor field is roughly divided into small grids, and a virtual
node is placed at the center of each grid. Five nodes are chosen as the
approximate central points.



points of the cluster-areas. We use an auxiliary graph GA ¼
hVA;EAi to help finding the central points, where VA is the
set of nodes in the grids, and each node vi in VA has an edge
to each of the nodes in its neighboring grids. Each grid,
except those on the border of the sensor field, has eight
neighboring grids (as shown in Fig. 5). The distance of all
edges in EA is set to 1. We compute a subset of nodes VC ,
VC � VA and jVC j ¼ C, such that the total distance from all
nodes in VA to their nearest nodes in VC is minimized. The
nodes in VC are the approximate central points of the C
cluster-areas in the sensor field. We use the same iterative
algorithm presented in Section 4.2 to compute the set of
nodes VC from VA in graph GA.

After computing VC , the sink can calculate the geo-
graphic locations of the nodes in VC , which are the
approximate locations of C central points of the cluster-
areas. The sink then broadcasts the locations information of
central points to all sensor nodes for CHs election. The size
of the grids that the sink divides the sensor field to depends
on the accuracy of locating the central points. The smaller
the size is, the more accurate the locations information will
be, but it incurs more computation cost in this case. In our
simulation, we simply set the grid size as a� a, where a is
defined in Section 3.

5.2 Cluster Head Election

Given the geographic location of the central point of a
cluster-area, the sensor node that is the closest to the central
point will become the CH. Since the sensor nodes do not
know who is the closest to the central point of a cluster-
area, and we do not know if there is a sensor node falling
into the close range of the central point, we let all nodes
within the range of Hr from the center be the CH
candidates of the cluster, where r is the transmission range
of sensors. The value of H is determined such that there is
at least one node within H hops from the central point of a
cluster (The detailed discussion on H is in Section 3 of the
online supplemental material). To elect the CH, each
candidate broadcasts a CH election message that contains
its identifier, its location and the identifer of its cluster. The
CH election message is propagated not more than 2H hops.
After a timeout, the candidate that has the smallest distance
to the center of the cluster among the other candidates
becomes the CH of the cluster.

In the extreme case that no sensor node falls within H
hops from the central point so that there is no CH for this
cluster-area, the nodes in this cluster-area accept the
invitation from neighboring CHs and become members of
other clusters. Thus, no node will be left out of the network.

5.3 Sensor Node Clustering

After a CH is elected, the CH broadcasts an advertisement
message to other sensor nodes in the sensor field, to invite
the sensor nodes to join its cluster. An advertisement message
carries the information: the identifier and location of the
CH, and the number of hop that the message has traveled.
The hop count is initialized to be 0.

When a sensor node receives an advertisement message, if
the hop count of message is smaller than that recorded from
the same CH, it updates the information in its record
including the node of previous hop and the number of hop

to the CH, and further broadcasts the message to its
neighbor nodes; otherwise, the message is discarded. The
maximal hop count for the advertisement message is set to
dD	e hops (D	 is from (8)), so that all nodes can receive the
advertisement messages from at least one CH.

After the advertisement of CH is complete, each non-CH
node decides which cluster it joins. The decision is based on
the number of hops to each CH. The routing from a sensor
node to its CH follows the reverse path in forwarding the
advertisement message. The data of sensor nodes within a
cluster is collected by this routing tree.

5.4 Backbone Tree Construction and Network
Maintenance

A backbone tree is constructed in a distributed fashion to
connect all CHs and the sink. Through the broadcasting of
the advertisement messages from CHs, each CH receives the
advertisement messages from the other CHs that are close to
it. Thus, it has the knowledge about the locations of its
nearby CHs and the number of hops to them. Since the sink
needs to broadcast the central points information to all
sensor nodes, all sensor nodes know the location of the sink
and the hop distance to it. For each CH, we define its
upstream CHs as the set of CHs (including the sink) that are
closer to the sink than itself in terms of euclidean distance.
We take a distributed method of an approximate MST
algorithm to construct the backbone tree. For each CH, it
chooses the CH that has the minimum number of hops to it
from the set of its upstream CHs as its parent CH in the
backbone tree.

After constructing the backbone tree, each CH has the
knowledge about its children CHs in the backbone tree.
When M projections are generated at the CH, they are
transmitted to the parent CH along the backbone tree in
M rounds.

When a CH fails or runs out of energy, the neighboring
nodes of the CH will detect the failure of the CH. These
nodes will broadcast a message to all the nodes in this
cluster to start the new CH election. The new CH election
algorithm and the new backbone construction follow the
same methods as presented in Sections 5.2 and 5.4. As there
are many distributed routing algorithms that were pro-
posed for sensor networks [31], [32], we simply use the
existing method [31], [32] for route maintenance.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
clustering method using hybrid CS. Our method is
compared with four other data collection methods. We
first evaluate the performance of our method on a regular
sensor field. In Section 6.2, we demonstrate that our
method can significantly reduce the number of transmis-
sions. In Section 6.3, we demonstrate the impact of the
cluster size on the number of transmissions. We also
evaluate the performance of our method on the nonhomo-
genous networks in an irregular sensor field. Refer to
Section 4.2 of the online supplemental material. All results
confirm that our method can save the number of transmis-
sions significantly. In addition, the comparison between
analytical results and simulation results is shown in
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Section 4.1 of the online supplemental material. It demon-
strates that our analytical model is strong in analyzing the
number of transmissions. The evaluation of the iteration
times to converge of our iterative algorithm in Section 4.2 is
shown in Section 4.3 of the online supplemental material.
The results demonstrate that our algorithm is efficient and
scalable in large-scale networks.

6.1 Simulation Metrics and Setup

We use two metrics to evaluate the performance of the
clustering with hybrid CS proposed in this paper: the number
of transmissions which is required to collect data from
sensors to the sink, and the reduction ratio of transmissions
(reduction ratio for short) of our method compared with
other methods. Four other data collection methods are
considered. In the clustering without CS method, the same
cluster structure to our method is used, but CS is not used.
In the shortest path tree (SPT) without CS, the shortest path
tree is used to collect data from sensors to the sink. In the
SPT with hybrid CS, the shortest path tree is used to collect
data from sensors to the sink, and CS is used in the nodes
who has more than M descendant nodes (including itself).
In the optimal tree with hybrid CS, a tree having minimum
transmissions is used. It is computed by the greedy
algorithm in [10].

In all simulations on the regular sensor field, sensor
nodes are uniformly and independently distributed in a
rectangle sensor field of the size 20� 10 square units. A sink
node is located at the corner of the sensor field. It has
coordinates (0, 0). The number of nodes N varies from 400
to 1,200, then the density of nodes � varies from 2 to 6. The
transmission range r is set to

ffiffiffi
2
p

unit. The edge length a of
small grid in our analytical model is set to 1 unit. Let
� ¼ N=M, it is called compressive ratio. � is set to 5 and 10,
so that the projections are sufficient to recover the original
data with satisfied accuracy [6], [8], [10], [11], [12]. The
measurement matrix � and the transform basis � in CS
could be selected as introduced in Section 1 of the online
supplemental material. These parameters have no effect on
the performance evaluation of our method. Each simulation
result is averaged over 50 random network topologies.

6.2 Reduction of Transmission Number

We compare our method with other methods in terms of the
number of transmissions. Fig. 6 shows the number of
transmissions, where the bars around the symbols on the
lines represent the 95 percent confidence interval (CI). As
shown in Fig. 6, the CI of our algorithms is tight. It is
obvious that the number of transmissions of our method is
significantly smaller than that of the clustering method
without using CS. The reason is that data are compressed
using the CS method at the CHs in our method. Each node
on the backbone tree does M transmissions for the
intercluster data gathering. It is significantly less than the
number of transmissions of the method without using CS.
The number of transmissions of our method is also visibly
smaller than that of SPT with the hybrid CS method. This is
because in the cluster structure, sensor nodes transmit data
to their cluster head, which is located nearly at the center of
the cluster, while in the SPT, sensor nodes transmit data to

the nodes near to the sink, which results in more
transmissions than our method.

The number of transmissions of our method is slightly
larger than that of the optimal tree with the hybrid CS
method. However, the cluster structure can be organized in
the distributed manner, while the optimal tree with hybrid
CS is computed in the centralized manner. In addition, our
distributed algorithm is fault tolerant. The greedy algorithm
[10] iteratively computes an optimal tree with the input of
network topology. The network topology may change due
to the node failures or the power outage. Once the network
topology changes, the resulting tree may not be energy
efficient anymore. While in our distributed algorithm, the
sink computes the approximate locations of central points
of the cluster-areas based on the geographic area of the
sensor field, instead of the network topology. Our algorithm
can easily reorganize the cluster structure that has the
similar quality in terms of the number of data transmissions
when failures or power outage occur in the network, as
discussed in Section 5.4.

Fig. 7 shows the reduction ratio of transmissions of our
method compared with other methods. As shown in Fig. 7a,
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Fig. 6. The number of transmissions of data collection methods. The
bars around the symbols on the lines represent the 95 percent
confidence interval.



when the compressive ratio is 10, our method reduces the
number of transmissions by about 60 percent compared with
clustering without the CS method. It reduces the number of
transmissions by about 50 percent compared with SPT
without the CS method. In addition, it reduces the number of
transmissions by about 30 percent when the number of
nodes is 1,200, compared with SPT with the hybrid CS
method. The reduction ratio does not drop as the number of
nodes increases. It demonstrates our method is scalable in
large-scale networks. As shown in Fig. 7b, when the
compressive ratio is 5, the reduction ratio of our method
decreases only about 10 percent compared with the case that
the compressive ratio is 10. It demonstrates that our method
has significant improvements in the worst case.

6.3 Impact of the Cluster Size

In this section, we evaluate the impact of the cluster size on

the performance of our method. The number of nodes is set to

1,000. The compressive ratio � is set to 10. In our simulations,

the number of clusters C varies from 1 to 15. The cluster size

is Nc ¼ N=C. From the analytical model in Section 3,

Nc ¼ �ðDaÞ2; ð11Þ

we get

D ¼
ffiffiffiffiffiffiffiffi
Nc

�a2

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
N

�a2C

r
: ð12Þ

Thus, for different C or different Nc, D is calculated from
(12). The number of transmissions T ðDÞ in analysis is
calculated from (7).

Fig. 8 shows the change of the number of transmissions
as the cluster size increases. For the curve obtained from
the centralized algorithm, we make the following observa-
tion, which conforms to our analysis in Section 3. As the
cluster size Nc increases, the number of transmissions
decreases; when Nc reaches a certain value, the further
increase of Nc would lead to the increase of transmissions.

Fig. 9 shows the change of the number of transmissions
as the number of clusters increases. From the analysis in
Section 3, it is known that the optimal number of clusters is
3. As shown in Fig. 9, by using the centralized algorithm,
the number of transmissions of 3 clusters is near to the
minimum number of transmissions.

7 CONCLUSION

In this paper. we used hybrid CS to design a clustering-based
data collection method, to reduce the data transmissions in
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Fig. 7. The reduction ratio of transmissions of clustering with the hybrid
CS method compared with other methods.

Fig. 8. The number of transmissions for different cluster size.

Fig. 9. The number of transmissions for different number of clusters.



wireless sensor networks. The information on locations and

distribution of sensor nodes is used to design the data

collection method in cluster structure. Sensor nodes are

organized into clusters. Within a cluster, data are collected to

the cluster heads by shortest path routing; at the cluster

head, data are compressed to the projections using the CS

technique. The projections are forwarded to the sink

following a backbone tree. We first proposed an analytical

model that studies the relationship between the size of

clusters and number of transmissions in the hybrid CS

method, to find the optimal size of clusters that can lead to

minimum number of transmissions. Then, we proposed a

centralized clustering algorithm based on the results

obtained from the analytical model. Finally, we present

a distributed implementation of the clustering method.

Extensive simulations confirm that our method can reduce

the number of transmissions significantly. When the number

of measurements is 10th of the number of nodes in the

network, the simulation results show that our method can

reduce the number of transmissions by about 60 percent

compared with clustering method without using CS. Mean-

while, our method can reduce the number of transmissions

up to 30 percent compared with the data collection method

using SPT with the hybrid CS. Even for the nonhomogenous

networks in the irregular sensor field, our method can

significantly reduce data transmissions compared with these

data collection methods.
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Abstract—This supplementary file contains the supporting materials of the TPDS manuscript - ”Transmission Efficient Clustering
Method for Wireless Sensor Networks using Compressive Sensing”. In this file, we first present the related works. Secondly, we
present the analysis on the optimal value of the edge length D of cluster-square and discussions on determining the parameter H
in our distributed implementations. Finally, we provide an additional performance evaluation. It includes the comparison between
analytical results and simulation results, the simulations on the non-homogenous networks, and iteration times to converge of
the iterative algorithm in our method.

F

1 RELATED WORKS

The sensor data in the sensor networks has spatial or
temporal correlations. The correlated data is sparse in
some transform domain, such as the wavelet domain
and Fourier domain [1], [2]. The new technology of
CS [3], [4], [5] motivates the investigations on data
gathering with CS [1], [2], [6], [7], [8], [9], [10], [11]
and target localization based on CS [12] in sensor
networks. The data gathering with pure CS in the
two dimensional area is conducted along the tree
structure in Fig. 1 of the main paper. In the ith

round of projection, the node vj generates a random
measurement coefficient ϕij (forms the measurement
matrix Φ), and computes the data term ϕijxj . Each
leaf node transmits its term to the parent node. Once
the parent node receives data from all its descendant
nodes, it can add its own data term and all received
data terms together and then send it to its upper
parent node or the sink node. When the sink node
receives data from all its descendant nodes, it adds
them to form the ith projection. In this way, the sink
nodes collect M projections

y = Φx,

then it can use ℓ1-norm minimization [13], [14] or
other heuristic algorithms, such as orthogonal match-
ing pursuit [15], to recover the original data of sensor
nodes.

In real systems, the measurement coefficient ϕij can
be generated using a pseudorandom number genera-
tor seeded with the identifier of the node vj [1]. Thus,
given the identifiers of the nodes in the network, the
sink can easily reconstruct the measurement matrix.

• Ruitao Xie and Xiaohua Jia are with the Department of Computer
Science, City University of Hong Kong, Kowloon, Hong Kong.
E-mail: ruitaoxie2@student.cityu.edu.hk, csjia@cityu.edu.hk.

The measurement matrix could be Gaussian random
matrix or Bernoulli random matrix [1]. The number
of projections M is determined by the total number
of nodes N and the sparsity level of the original data
[1]. If the sparsity of sensor data changes over time,
the adaptive method in [11] can be used to adjust M .
The transform basis is not required in generating the
projections, but it is used in the recovery of origi-
nal data. The discrete Fourier transform or discrete
wavelet transform could be used as the transform
basis [1].

Authors in [6] analyzed the network capacity when
CS is utilized in data gathering and proved that the
capacity gain is proportional to the sparsity level
of sensor data. The load balance contributes to this
capacity gain. Although researchers stated that the
total transmission number can be reduced when the
number of projections is low enough. However, if the
required number of projections increases, for exam-
ple if the sparsity level of signal is not sufficiently
small, then the total number of transmissions may
be larger than the case without using CS. Authors in
[7] proposed to obtain measurements from spatially-
localized sensors, that is to use sparse measurement
matrix in CS, and showed that joint reconstruction is
better than independent reconstruction with localized
projection. Different from their works, we use general
measurement matrix and analyze the optimal cluster
size to minimize the number of transmissions.

Authors in [2] designed a data gathering scheme,
where in each round of projection M furthest nodes
away from the sink send their original data directly to
one of the remaining nodes which apply the CS. They
proved that this scheme can reduce the transmission
cost. Authors in [8] researched how large throughput
can be achieved with or without CS, or with the
hybrid scheme, where compression is only applied
on the nodes whose incoming traffic is reduced by



2

the CS. The authors stated that application of CS in
the simple scheme may bring no obvious throughput
improvement, but application of CS in hybrid scheme
can achieve significant throughput improvement. Au-
thors in [9] applied hybrid CS in the data collection
and proposed an aggregation tree with minimum
energy consumption. The energy consumption of a
link in [9] is a function of the link length. In the special
case when the energy expense of sending one unit of
data across link is 1, the energy consumption to collect
one unit of data from each sensor in the network is
equal to the number of transmissions.

Motivated by the CS theory, authors in [10] pro-
posed a distributed energy-efficient sensor network
scheme: In each frame, a randomly chosen subset of
nodes participate in the sensing process and transmit
data by randomly accessing the channel. The field
reconstruction based on CS is performed at the fusion
center with sufficient collision-free packets received.
The sparsity of natural signals may vary in temporal
and spatial domain. To address this challenge, authors
in [11] presented an adaptive data gathering scheme
by CS for wireless sensor networks. In their adaptive
scheme, the autoregressive model is introduced into
the CS reconstruction, and the number of measure-
ments is adjusted according to the variation of the
sensed data. Authors in [11] also proposed a novel
abnormal readings detection and identification mech-
anism based on combinational sparsity reconstruction.
Authors in [12] applied CS to count and localize
targets in wireless sensor networks. In their works, a
greedy matching pursuit algorithm is proposed to ac-
curately recover sparse signals with high probability.
Moreover, a framework for counting and positioning
targets from multiple categories is also proposed.

The previous works use CS method on routing
trees. However, clustering methods have many ad-
vantages over the tree methods [16], [17], [18], [19],
[20], [21], such as fault tolerance and traffic load
balancing. In addition, the previous works ignored
the locations and node distribution of sensor nodes.
While in sensor networks, the information of node
distribution can help the design of data gathering
method that uses fewer data transmissions [16], [17],
[18], [19], [20], [21]. In this paper, we aim at using
the information of node locations and distribution to
propose a clustering method that uses the hybrid CS
for sensor networks.

2 OPTIMAL VALUE OF D

The total number of transmissions of hybrid CS
method in cluster structure is:

T =
N

3
(1− 3M

2N
) ·D +

N

3
(
3M

λa2
− 1) · 1

D

= c1 ·D + c2 ·
1

D
.

(1)

Considering the above Eq. (1), T is a function of D,
where D lies in the interval [1, DMAX].

In the analytical model, λa2 is the number of nodes
in a grid. To allow any nodes in a grid to be able to
communicate with each other, a is set as r√

2
. Thus,

when the number of nodes in such small grid is
sufficiently smaller than 3M , 3M

λa2 is much greater than
1, that is c2 > 0, and the term 3M

λa2 − 1 is approximate
to 3M

λa2 .
With different M , the best value of D to minimize

T is different. Firstly, if M ≥ 2
3N , that is c1 ≤ 0, T is a

mono-decreasing function of D. T is lowest when D
is largest.

Secondly, if M < 2
3N , that is c1 > 0, T changes

in this way: when D is small, as the increase of D, T
decreases; when D reaches a certain value, the further
increase of D would lead to the increase of T . Thus,
there is an optimal value of D such that the number
of transmissions is lowest.

From
dT

dD
= c1 −

c2
D2

= 0,

we get

D| dT
dD=0 =

√
c2
c1

=

√
3M
λa2 − 1

1− 3M
2N

. (2)

It is approximate to

D| dT
dD=0 ≈

√
3M
λa2

1− 3M
2N

. (3)

From D| dT
dD=0 = DMAX, we get

M =
2

9
N. (4)

When M ≤ 2
9N , D| dT

dD=0 ≤ DMAX, it is feasible, thus
the optimal value D∗ is D| dT

dD=0 ; when 2
9N < M <

2
3N , D| dT

dD=0 > DMAX, it is infeasible, thus D∗ is DMAX.
Following the above analysis, it is concluded that

when M is less than 2
9N , the optimal value D∗ is

calculated as in Eq. (5):

D∗ =


√

3M
λa2 − 1

1− 3M
2N

, M < 2
9N ;

DMAX,
2
9N ≤ M ≤ N.

(5)

When M ≥ 2
9N , and in the extreme case when M =

N , the optimal value D∗ is DMAX.

3 DISCUSSION ON H

This section discusses how to determine the value
of H . Let Pth denote the required probability that
there is at least one node in an disk with area π(Hr)2

(Pth is called threshold probability). Given the density
λ of the Poisson distribution of sensor nodes and
the threshold probability Pth, the value of H can
be determined as follows. According to the Poisson
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point process, the probability that a field with area A
contains n nodes is,

P (n) =
e−λA(λA)n

n!
, for n = 0, 1, 2, · · · .

Thus, an disk with area π(Hr)2 contains at least one
node with the following probability,

P (n ≥ 1) = 1− P (n = 0) = 1− e−λπ(Hr)2 ≥ Pth.

Therefore, the threshold probability Pth can be met if
the value of H is larger than

H ≥
√

− ln(1− Pth)

λπr2
.

That is, given Pth, we can determine the value of H ,
such that there is at least one node within H hops
from the central point of a cluster. For example, when
the transmission range r is

√
2 units, λ is 1 and Pth is

99.99%, H should be at least 1.21 unit.

4 ADDITIONAL PERFORMANCE EVALUA-
TION

In Section 6.1 of the main paper, we have shown the
simulation metrics and setup in detail.

4.1 Analytical Results versus Simulation Results

Fig. 1 shows the number of transmissions in analysis
and in simulation, where the number of nodes varies
from 400 to 1200 and the compressive ratio is 10. The
number of transmissions T (D∗) in analytical result is
calculated from Eq. (7) with D∗ from Eq. (8) in Section
3 of the main paper. It is shown that the gap between
the simulation result and the analytical result is small.
The number of transmissions in simulation conforms
to the results obtained from our analytical model. It
demonstrates that our analytical model is strong in
analyzing the number of transmissions.

4.2 Simulations on the Non-homogenous Net-
works

In this section, we evaluate the performance of our
method on the non-homogenous networks in an ir-
regular sensor field. As shown in Fig. 2, the irregular
sensor field has 6 void areas in the rectangle field
of 20 × 10 square units. In our simulations, sensor
nodes are uniformly and independently distributed
in the sensor field. The density of nodes varies from
2 to 6. The compressive ratio is set to 10. The other
parameters are set as in Section 6.1 of the main paper.

Fig. 3 shows the number of transmissions of data
collection methods in the irregular sensor field. Our
method can reduce the number of transmissions sig-
nificantly compared with other methods. The number
of transmission of our method is slightly larger than
that of the optimal tree with hybrid CS method.
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Fig. 1. The number of transmissions in analysis vs in
simulation, where the compressive ratio is 10. The bars
around the symbols on the lines represent the 95%
confidence interval.
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Fig. 2. An example of non-homogenous network in
an irregular sensor field. The sensor nodes form 4
clusters.

Fig. 4 shows the reduction ratio of transmissions
of our method compared with other methods in the
regular and the irregular sensor field. The networks in
the regular sensor field is set as presented in Section
6.1 of the main paper. As shown in Fig. 4, in the
irregular sensor field, our method has the similar
improvements to the case of the regular sensor field.
The reduction ratio compared with the SPT with
hybrid CS method decreases only 5% in the irregular
sensor field, compared with the case of the regular
sensor field.

Fig. 5 shows the change of the number of transmis-
sions as the number of clusters increases. The density
of nodes is set to 5. From the analysis in Section 3 of
the main paper, for the networks in the regular sensor
field, it is got that the optimal number of clusters is 3.
As shown in Fig. 5, by using the centralized algorithm,
the number of transmissions of 3 clusters is near to the
minimum number of transmissions.
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Fig. 3. The number of transmissions of data collection
methods in the irregular sensor field.
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Fig. 4. The reduction ratio of transmissions of clus-
tering with hybrid CS method compared with other
methods in the regular and the irregular sensor field.
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Fig. 5. The number of transmissions for different
number of clusters, where the density of nodes is 5.
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Fig. 6. Iteration times of our iterative algorithm to
converge. The vertical lines around the top of bars
represent the 95% confidence interval.

4.3 Iteration Times of the Iterative Algorithm in
Our Method

In this section, we evaluate the iteration times of the
iterative algorithm in Section 4.2 of main paper to con-
verge. The compressive ratio is set to 10. The number
of nodes varies from 400 to 1200. We do simulations
on the regular sensor field. In our algorithm, the initial
set of cluster heads is randomly selected by the sink.
As shown in Fig. 6, our iterative algorithm takes 4 or 5
iterations on average to compute the CHs of clusters.
In addition, our algorithm converges in the same rate
as the number of nodes increases from 400 to 1200.
It demonstrates that our algorithm is scalable in large
scale networks.
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