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Abstract—Virtual machine migration has been touted as one of the crucial technologies in improving data center efficiency, such as

reducing energy cost and maintaining load balance. However, traditional approaches could not avoid the service interruption

completely. Moreover, they often result in longer delay and are prone to failures. In this paper, we leverage the emerging named data

networking (NDN) to design an efficient and robust protocol to support seamless virtual machine migration in cloud data center.

Specifically, virtual machines (VMs) are named with the services they provide. Request routing is based on service names instead of IP

addresses that are normally bounded with physical machines. As such, services would not be interrupted when migrating supported

VMs to different physical machines. We further analyze the performance of our proposed NDN-based VM migration protocol, and

optimize its performance via a load balancing algorithm. Our extensive evaluations verify the effectiveness and the efficiency of our

approach and demonstrate that it is interruption-free.

Index Terms—Named-data networking, cloud data center, virtual machine migration
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1 INTRODUCTION

VIRTUALIZATION [1] has been touted as a revolutionary
technology to transform data centers. With the grow-

ing demand of Internet services [2], more and more data
centers were deployed globally. However, their utilization
has found to be low, typically ranging from 10 to 20 per-
cent, as reported in [3]. Virtualization technology, in
which physical resources (i.e., computing, storage, net-
working) are partitioned and multiplexed, has been intro-
duced to tackle the low-utilization problem in data
centers. Specifically, a virtualized server, referred to as a
virtual machine (VM), can be dedicated to a particular
application, and virtual machine migration [1], [4] can be
used to consolidate VMs from under-utilized physical
machines in order to reduce the energy cost of data cen-
ters. It has been reported that VM migration can provide
various benefits, such as load balancing [5] and perfor-
mance optimization [6].

However, the VM migration imposes new challenges on
data center operations. It results in an IP mobility problem
[7], in which a VM migrated to another subnet would be
assignedwith a different IP address. The IPmobility problem
brings in challenges on both live and offline VM migrations.

In the live migration, a VM is migrated while its service is
running. It would result in service interruptions. Since other
VMs communicating with the migrated VM could not learn
its new IP address timely. In the offline migration, a VM is
migrated after it is shut down and assigned with a new IP
address. As a result, the change of the IP address requires a
manual reconfiguration of the network settings in all related
VMs. Such a manual process is labor-intensive, time-con-
suming and error-prone, since the IP addresses are involved
in various network, security and performance policies.

Various approaches have been proposed to address the
VM migration problem. One approach, as in [8], [9], [10],
attempted to solve the problem by adapting the existing
mobile IP solution, i.e., the triangular routing. It not only
introduces packet delivery delay but also results in exces-
sive network traffic. Another approach [11] adapted the
mobile IPv6 to the VM migration. It requires the migrated
VM to advertise its new address to other communicating
nodes. It could not avoid service interruptions, because the
advertisement takes some time, during which the traffic to
the migrated VM may be routed to its old location via out-
dated information. A different approach, as in [7], [12], [13],
[14], used two addresses to solve the problem, an IP address
used for identifying a VM and a location-specific address
used for routing to a VM. The binding information between
these two addresses is maintained in a central proxy. This
approach can neither avoid service interruptions. Since it
also takes some time to update the binding information.
Moreover, the central approach is unscalable and prone to
the single point of failure problem.

In this paper, leveraging the emerging technique
named data networking (NDN) [15], [16], we propose a
novel method to support an interruption-free VM migra-
tion. That is, we identify the communication with a VM
via the name of the service running on it rather than its
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network address. The routing is directed via the service
name. In this way, services and VMs are decoupled from
their locations.

In the named-service framework, we aim to support a
seamless VM migration protocol. First, we propose a dedi-
cated named service routing protocol. Second, we propose a
VM migration policy to support interruption-free service
access. Finally, we conduct analyses and simulations to ver-
ify the benefits of our approach. The analysis and simula-
tion results demonstrate the following advantages:

1) The VMmigration is interruption-free;
2) The overhead to maintain the routing information by

our routing protocol is less than classic NDN;
3) The routing protocol is robust to both link and node

failures;
4) Our framework inherently supports the implementa-

tion of a distributed load balancing algorithm, via
which requests are distributed to VMs in balance.

The rest of this paper is organized as follows. Section 2
presents the related works on solving the IP mobility
problem in VM migrations. In Section 3, we briefly intro-
duce the concept of NDN, and present a named-service
framework. Section 4 presents the named-service routing
protocol. Section 5 presents a seamless VM migration pol-
icy and analyzes its performance. Section 6 presents a dis-
tributed load balancing algorithm. The simulations and
performance evaluations are presented in Section 7.
Section 8 concludes the paper.

2 RELATED WORKS

We review the existing works on the IP mobility problem in
DCN and categorize them into three lines of research.

The first line of work adapts the existing mobile IP solu-
tion, to VMmigrations (as in [8], [9], [10]), in which all traffic
to and from the migrated VMmust traverse a home agent in
the source subnet. This triangular routing not only introdu-
ces packet delivery delay but also results in excessive net-
work traffic. Johnson et. al. in [11] adapted the mobile IPv6
to VMmigrations. Although it can avoid the triangular rout-
ing, it requires the migrated VM to advertise its new
address to other communicating nodes. This needs the
migrated VM to be aware of the set of communicating
nodes, which is impractical. In addition, it could not avoid
service interruptions. Because the advertisement takes some
time, during which the traffic to the migrated VM may be
routed to its old location when the address has not been
updated yet.

The second line of work uses two addresses to solve
the problem (as in [7], [12], [13], [14]): an IP address
used for identifying a VM and a location-specific address
used for routing to a VM. As such, once a VM is
migrated to another location, its IP address is retained,
while its location-specific address is changed. The bind-
ing information between these two addresses is main-
tained in a central proxy. This approach can neither
avoid service interruptions. Since it also takes some time
to update the binding information in the central proxy
and keep the binding information consistent within other
communicating VMs. During the updating time, the traf-
fic may be routed with outdated binding information.

Moreover, the central approach is unscalable and prone
to the single point of failure problem.

The third line of work adopts service names to access
applications in DCN [17]. This approach still needs to main-
tain a binding between a service name and a list of network
addresses of servers in a dedicated server. In this approach,
first packet of each flow is sent to a service router to resolve
the service name, and the following packets are routed via
the resolved network address. It encounters the same prob-
lems as the above binding approach.

3 NAMED-SERVICE FRAMEWORK IN DCN

We now apply the key design principles of NDN to address
the IP mobility problem in VMmigrations.

3.1 Named Data Networking: A Primer

NDN is a receiver-driven, data-centric communication par-
adigm [15], [16]. In NDN, each piece of data is uniquely
identified by a location-independent name, and communi-
cation is performed by specifying the data names instead of
the host locations. There are two types of NDN packets:
interest and data. To request a data, a consumer puts the
name of the data into an interest packet and sends it out.
The routing nodes use the name to forward the interest
packet toward the data producer. The data packet is
returned along the reverse path of the corresponding inter-
est packet, either from a data producer or a routing node
that caches the data.

NDN adopts a novel routing protocol. Each routing node
maintains three data structures: the forwarding information
base (FIB), the pending interest table (PIT) and the content
store. FIB is similar to that in IP-based networks, except that
it contains name prefixes instead of IP address prefixes, and
allows for multiple outgoing interfaces rather than a single
one for each name prefix. PIT maintains an entry for every
pending interest packet, so that data packets can be
returned in reverse. The content store caches the data trans-
ferred by the routing node, which is different from tradi-
tional IP-based networks.

Based on these routing information, NDN routing node
can process two types of packets as follows. First, when a
node receives an interest packet, it looks up the longest-
match information with the requested data name. It first
checks whether there is a matching data in its content store.
If any is found, the data is sent through the incoming inter-
face of the interest packet. Otherwise, if there is a matching
PIT entry, then the incoming interface of current request
will be added to the list of incoming interfaces in this PIT
entry. Otherwise, if there is a matching FIB entry, then the
node forwards the interest packet to the interface deter-
mined by a particular forwarding policy, and creates a new
PIT entry. If there is no matching for this interest packet,
then it is discarded. Second, a data packet is returned to
consumers following the reverse path of the corresponding
interest packet. When a routing node receives a data packet,
it looks up its PIT with the data name. If a matching PIT
entry is found, the node sends the data packet to a list of
interfaces in the entry. Then it caches the data in the content
store and removes the PIT entry. Otherwise, the data packet
is discarded.
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3.2 Design Rationale

DCN is a good environment for applying the NDN designs.
There are two reasons. First, the applications in DCN
require efficient managements, such as VM migration, load
balancing and caching. NDN can provide a systematic solu-
tion to address these issues. In contrast, existing approaches
are point solutions, such as migration systems, load bal-
ancers and caching proxies. Second, DCN allows efficient
network operations, due to its regular topology and well
controlled machines.

NDN decouples location from identity and communica-
tion, and enables maintaining communication in dynamic
environments, for example, when the host locations change.

Following this principle, we propose a named-service
framework for DCN. In this framework, a service is identified
by a location-independent name and is accessed via its
name instead of the network address of its host VM. There-
fore, clients can access the service regardless of where VMs
are hosted or migrated. In addition, as in NDN, our frame-
work can provide robust security and performance
improvement by leveraging the features of data-based secu-
rity and data caching.

3.3 Named-Service Framework in DCN

We next present a system-level description of our proposed
named-service framework. As illustrated in Fig. 1, our
framework consists of two components: i) the named ser-
vice protocols within the data center, and ii) service gate-
way(s). The first component comprises a named-service
routing protocol rendering the service to the requests and a
VM migration policy supporting the VM migrations. The
second component translates the IP-based external traffic
into the named-service framework.

This framework can support two types of traffic in DCN:
1) traffic flowing between an external client and an internal
VM, and 2) traffic flowing between two internal VMs [18].
The requests of internal traffic are directly presented in the
named-service format, while the external requests enter in
the framework through the dedicated gateways.

We make the following assumptions when designing the
framework. First, a service is deployed on multiple VMs in
DCN. This is reasonable since an application in DCN is usu-
ally provided by multiple servers for scalability and reliabil-
ity. Second, the migrated VM does not store user context. As
such, the requests from the same user can be handled by any
VM that provides the service. This is reasonable because

majority traffic in data center are based on stateless protocols,
such as HTTP [19]. Note that the first assumption ensures
that other VMs can provide the service when a VMmigrates,
while the second assumption ensures that a request is loca-
tion-independent, thus can be identified by a location-inde-
pendent service name and routed in our framework.

3.4 Design Challenges

We address three issues when designing the named-service
framework: an efficient and robust routing protocol, a flexi-
ble migration policy and performance optimization. First,
we encounter a challenge distinctive from the classic NDN
in designing a named-service routing in DCN: the low-over-
head requirement. Specifically, in the classic NDN, the
propagation of routing information results in a high over-
head, since it involves every routing node. To reduce this
overhead, a dedicated and efficient named-service routing
protocol is designed, by taking advantage of the multi-
rooted tree topology of DCN as in Fig. 4. Second, to handle
the routing in sparsely-connected topology resulted from
link and node failures, we propose a mechanism of route
learning. Third, to support interruption-free service access,
we propose a VM migration policy. Finally, to avoid link
congestions and hot spots, we propose a distributed load
balancing algorithm to distribute requests across multiple
VMs and multiple paths.

4 NAMED-SERVICE ROUTING PROTOCOL

In this section, we propose a named-service routing protocol,
a core component of the named-service framework. To meet
the low-overhead requirement in DCN, we design a dedi-
cated control message protocol to maintain routing informa-
tion at routing nodes. Moreover, to improve the robustness
of the routing protocol under link and node failures, we pro-
pose a mechanism of route learning. This section is orga-
nized as follows.We start with basic packet formats and data
structures maintained at routing nodes. Then, we introduce
the control message protocol. Next, we introduce the specific
forwarding process to handle the packets.

4.1 Packet Format

Communications in the named-service routing protocol are
performed over two types of packets: request and response,
adopted from the classic NDN packet formats, as illustrated
in Fig. 2. We explain each of the fields as follows.

The service name uniquely identifies a service running on
multiple VMs in DCN. It is carried by both request and
response packets. The naming system is an important

Fig. 1. Named-Service Framework in DCN. The gateways translate the
IP-based external traffic into the name-based traffic.

Fig. 2. Basic packet formats in named-service routing protocol.
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research issue in the NDN and is now still under active
research [15]. Note that our named-service framework
doesn’t depend on any specific naming system.

The client nonce is a random number generated by the cli-
ent, carried by both packets. It is used for two purposes.
First, duplicated request packets have the same client nonce,
thus they can be detected and discarded. Second, the desti-
nation of a response packet is identified via the nonce, so
that it can be returned along the reverse paths of the associ-
ated request packet.

The cache control field denotes whether the packet is for a
dynamic content (such as a search result) or for a static con-
tent (such as a piece of video). It is set by the client sending
the request packet, and copied into the response packets
returned. By detecting this field, the switches decide
whether to cache the content or not. We focus on the case
where the request is for a dynamic content in this paper.
Our methods are easily extended to the static content case.

The sequence number is created by the responding service
and carried in every response packet. It indicates the num-
ber of remaining response packets to be sent by the
responding service. It is zero for the last packet. Since all
the response packets corresponding to a request follow the
same path back to the client, they are received by the switch
in the same order. Thus, upon a switch receives and for-
wards the last response packet, it removes the related pend-
ing request table (PRT) entry.

In addition, more fields can be added for other manipula-
tions, such as authentication, encryption and congestion
control, as in classic NDN [15], [16].

4.2 Routing Data Structures

In the named-service routing protocol, similar to NDN, each
routing node maintains three data structures: the forward-
ing information base, the pending request table and the
Cache Store.

FIB is similar to that in NDN. As shown in Fig. 3, it con-
sists of the service name and multiple outgoing interfaces
for each service name. In addition, for each pair of name
and interface, the FIB entry has a capacity value. It is used
for a distributed load balancing algorithm, which will be
discussed in Section 6. It represents the total capacity (i.e.,
maximum number of requests served per time unit) of the
VMs that provide the service and are reachable through the
interface in the FIB entry.

PRT is used to maintain an entry for every pending
request packet, so that every response packet can be

returned to the client in a reverse path. Each PRT entry
records the service name, the client nonce identifying the
client, and the requesting interface from which the request
packet is received.

The Cache Store is used to cache the response data, if the
cache control field in the response packet indicates that the
data is cacheable.

4.3 Control Message and FIB Update

Next we discuss how FIB is populated and updated using
the event-driven control messages. Via the control mes-
sages, a VM can report service starting, service stopping and
service capacity updating. Specifically, a service starting mes-
sage is sent, when a VM is allocated at the first time or
migrated to a new location. Similarly, a service stopping
message is sent, when a VM is about to migrate or stop its
service. Moreover, a service capacity updating message is
sent, when a VM’s capacity changes. More functions can be
added if necessary.

To reduce the overhead to propagate control messages,
we implement a small-scale propagation. We allow each
switch to forward a control message to all of its upper-layer
switches directly connected. For example, in a DCN as
shown in Fig. 4, the control message to publish VM A’s ser-
vice name is transferred in the direction of arrows. This
small-scale propagation results in three properties of the ser-
vice names in FIB:

1) Each switch knows the service names of the VMs in
its subtree, which consists of itself as the root node
and all its descendant nodes in the topology (e.g., in
Fig. 4, aggregation switch S can learn the service
names of the VMs: A, B, C and D);

2) The closer a switch is to the VMs, the fewer service
names it knows; while the closer a switch is to the
core-switch layer, the more service names it knows;

3) In a richly-connected topology, such as the Clos and
fat-tree topology as shown in Fig. 4, each core switch
knows the service names in the entire network.

The FIB entries are updated as follows. A control message
sent by a VM carries its service name and capacity value. In
particular, a control message with the capacity value of zero
reports the service stopping. Once a switch receives a control
message, it proceeds two steps: 1) updates the FIB; 2) updates
and forwards the message. First, it looks up a FIB entry by
matching the entry’s service namewith the one carried in the

Fig. 4. Each switch forwards a control message to all of its upper-layer
switches directly connected. For example, the control message to pub-
lish VM A’s service name is transferred in the direction of arrows. As
such, each switch knows the service names of the VMs in its subtree.
For example, aggregation switch S knows the service names of the
VMs: A, B, C and D.

Fig. 3. Basic routing data structures in named-service routing protocol.
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message and matching the entry’s interface with the one
from which the message is received, respectively. If any
entry is not found, then a new FIB entry is created and added
into FIB. Otherwise, that is a FIB entry is found, if the mes-
sage reports the service stopping, then the entry will be
removed; if the message reports the service capacity updat-
ing, then the entry will be updated by replacing its capacity
value with the one carried in the message. Second, this
switch calculates the total capacity of the VMs that have this
service name and are reachable through this switch. That is,
it sums up all capacity values of this service name in its FIB.
Then, it updates the control message by replacing the capac-
ity field with the calculated total capacity, and forwards the
updatedmessage to all upper-layer switches.

This control message protocol results in lower overhead
than the classic NDN [15], in which the routing information
is propagated to every routing node. The overhead is
affected by the transmissions of the messages rather than
the message size, since a control message only carries a ser-
vice name and a capacity value, and its size is small. For
example, in the fat-tree network built with four-port
switches as shown in Fig. 4, our protocol takes seven trans-
missions to propagate a control message; while the classic
NDN takes 33 transmissions, which includes seven trans-
missions from the VM to all core switches and 26 transmis-
sions from all core switches to all ToR switches. In general,
for a fat-tree network built with k-port switches (k � 4) [20],
via our protocol, a message is sent from a VM to its upper

ToR switch, and then is transmitted following a full k
2-ary

tree from the ToR switch to all core switches. Thus its num-
ber of transmissions is

k

2
� k
2
þ k

2
þ 1 ¼ k2

4
þ k

2
þ 1: (1)

In comparison, via the classic NDN, a message is sent from
a VM to its upper ToR switch, and then is transmitted along

all the links between all ToR switches and all core switches.
Thus its number of transmissions is

k � k

2

� �2

þ k

2
� k
2
� kþ 1 ¼ k3

2
þ 1: (2)

Thus, our control message protocol can reduce the overhead
from Oðk3Þ to Oðk2Þ. Since there are s ¼ 5k2=4 switches in
the fat-tree topology, equivalently the control message over-

head is reduced from Oðs32Þ to OðsÞ.

4.4 Forwarding Process

In this part, we discuss the forwarding process to handle
packets in our named-service routing protocol. Recall that
via the preceding control message protocol, the service
names in the FIB of each switch have three properties. Based
on these properties, we propose the following forwarding
process: upon receiving a request packet, if a switch knows
the requested service name, it will forward this packet; oth-
erwise, it will forward this packet to any upper-layer switch
in order to find a route. As such, a request can be success-
fully forwarded. This is because, a request would arrive at a
core switch, if no switch at previous hops knows the
requested service name. Moreover, every core switch can
forward the request, since it knows all service names (from
property 3). However a core switch may not know all ser-
vice names in some situations, we will discuss how to deal
with it in Section 4.5.

We first explain how to handle the request and response
packets in detail, as illustrated in Figs. 5 and 6 respectively.
Because a service is provided by multiple VMs, there are
multiple interfaces to forward a request. Thus, a set of inter-
faces are picked as candidates, and one of them is selected
via a load balancing algorithm introduced in Section 6. To
obtain the candidate interfaces, when a switch receives a
request packet, it looks up the FIB entries by matching the
entries’ service name with the requested one. If some FIB
entries are found, a set of interface candidates are obtained;
otherwise, all interfaces connected to upper-layer switches
are picked as candidates. After the request is forwarded to
one of the candidate interfaces, a new PRT entry is created
for returning the response packets later.

A response packet is returned to the client along the
reverse path of the corresponding request packet, using the
information in PRT. Specifically, when a switch receives a
response packet, it looks up a PRT entry whose service
name and client nonce match those carried in the response
packet respectively. If any is found, then the switch will
send the packet to the requesting interface in the entry
found, and then remove the PRT entry if this is the last

Fig. 5. The flowchart of handling a request packet.

Fig. 6. The flowchart of handling a response packet.
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response packet (with sequence number of 0). Otherwise,
that is any PRT entry is not found, it will be discarded.

4.5 Mechanism of Route Learning

Via the preceding forwarding process, a request packet
would arrive at a core switch, if no switch at previous hops
finds any FIB entry to forward this request. The request will
be successfully forwarded, if the core switch knows the ser-
vice name. It is usually true in a richly-connected network
that every core switch can know the service names in the
entire network. However, it is not true in some scenarios,
such as when a link fails, or the network topology is
sparsely connected. These scenarios result in that a top-
layer switch cannot forward a request, and further a request
may fail to reach a VM. For example, Fig. 7 shows a network
topology which consists of four VMs providing two services
named A and B and four switches S1 � S4. Each switch’s
FIB is shown beside it, where Serv represents service and IF
represents interface. Due to the link failure between S1 and
S4 (red cross in the figure), switch S1 knows only service
name A, exclusive of service name B. Suppose service A
would like to request service B. When switch S1 receives the
request for B, it has no interface to forward.

To address this problem, we introduce the request NACK
packet, inspired by [16]. That is, when a routing node can-
not forward a request packet, it sends back a request NACK
to the previous-hop node of the request packet, to let it try
an alternative interface. However, this mechanism causes
high NACK overhead and long latency for successive
requests. Since although the node receiving the NACK uses
another interface to forward the current request, it still pos-
sibly uses the unreachable interface to forward a new
request. To address it, we further propose a mechanism of
route learning, that is, recording the unreachable interfaces
toward the upper-layer switches so that these interfaces can
be filtered out when forwarding the requests afterwards.
The reason why to record the unreachable interfaces instead
of the reachable ones is that in a richly-connected data cen-
ter network the number of unreachable interfaces is usually

lower than that of reachable ones. It is noted that a request
NACK packet carries the whole information in the request
packet, so that a receiving node can retransmit the request
without caching.

Next, we explain how to proceed the mechanism of route
learning in detail. Each switch maintains a list of unreach-
able interfaces, in order to filter them out in forwarding the
requests toward the upper-layer switches. It consists of the
service name and the unreachable interface. As illustrated
in Fig. 8, upon receiving an NACK packet, if its arriving
interface is toward an upper-layer switch, then this node
adds the entry hservicename; arrivinginterfacei into the list
of unreachable interfaces. To adapt this list to the network
dynamics (e.g., a link failure recovery), we set an expiration
time for each entry. An entry is removed from the list when
its time expires. The setting of the expiration time depends
on how fast a switch needs to adapt to network dynamics.
The shorter the expiration time is, the faster a switch adapts
to network dynamics, but it incurs more NACK overhead.
After the route learning, the node obtains the request from
the request NACK packet, and forwards the request again
to another interface. For example, in Fig. 7, switch S1 has no
interface to forward the request for B, so it returns an
NACK back. When switch S3 receives the NACK, it records
the service name and the unreachable interface (Un-IF for
short): B and 3. Then it re-forwards the request through
another interface. Eventually, this request arrives at service
B. Moreover, subsequent requests for service B will not be
forwarded to the unreachable switch S1, since the unreach-
able interface is filtered out.

Here, we discuss how to filter unreachable interfaces out
in the request forwarding. Recall that without the mecha-
nism of route learning, if no FIB entry is found, then all
interfaces connected to upper-layer switches are picked as
candidates, as discussed in Section 4.4. To adapt to the new
mechanism, an extra step has to be taken. That is, the switch
looks up the list of unreachable interfaces, to find if there is
any unreachable interface for the requested service. If any is
found, then this unreachable interface is removed from the
candidates, as illustrated in Fig. 5.

4.6 Discussions on Reliability

We discuss two mechanisms to improve the reliability of the
named-service routing protocol. First, the outdated FIB
entries due to node failures or control message losses can be
updated by interface probing. That is, a switch can periodi-
cally send probing messages to its lower-layer switches or

Fig. 7. An example of routing a request when a link fails (red cross).
Each switch’s FIB is shown beside it (Serv: service, IF: interface). Due
to the link failure, switch S1 knows only service name A, exclusive of ser-
vice name B. Suppose service A would like to request service B. When
switch S1 receives the request for B, it has no interface to forward, so it
returns an NACK back. When switch S3 receives the NACK, it records
the service name B and the unreachable interface (Un-IF for short) 3.
Then it re-forwards the request through another interface.

Fig. 8. The flowchart of handling a request NACK packet.
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VMs to collect the latest service names and capacity informa-
tion. The overhead can be controlled by limiting the probing
frequency. Second, for packet losses, clients are responsible
for re-sending the request when any response is lost.

5 VIRTUAL MACHINE MIGRATION POLICY

In this section, we propose a seamless VM migration policy,
based on the named-service routing protocol, and analyze
its performance.

5.1 VM Migration Phases

In a typical VM migration, the memory transfer can be gen-
eralized into three sequential phases [4]:

� Push phase. In this phase, the source VM continues
running while certain pages are pushed across the
network to the destination;

� Stop-and-copy phase. In this phase, the source VM is
stopped, pages are copied to the destination VM,
then the new VM is started;

� Pull phase. In this phase, the new VM executes and, if
it accesses a page that has not yet been copied, this
page is pulled across the network from the source
VM.

Most practical migration approaches select one or two of
three sequential phases, as introduced in [4]. In next subsec-
tion, we propose a policy which involves in the first two
phases, to support an interruption-free VMmigration.

5.2 VM Migration Policy

The VM migration policy involves in the push phase and
the stop-and-copy phase. As shown in Fig. 9, it consists of
two rules: 1) at the beginning of the push phase, the source
VM sends a service stopping message to stop receiving
requests (�1 in the figure), and at the end of the stop-and-
copy phase, the destination VM sends a service starting
message to receive requests (�4 in the figure); 2) the source
VM does not stop, that is, does not start the stop-and-copy
phase, until it responses all waiting requests in its queue (�2
in the figure).

Recall that via the control message protocol, the service
stopping message sent by the migrated VM is transferred
from the bottom layer to the top layer. When a routing node
receives the message, it updates its FIB. Instead of updating
all the FIBs on all related nodes simultaneously, the upper-
layer node updates its FIB latter than the lower-layer node,
since there is transmission delay. This results in a situation
that when a lower-layer node receives a request from an

upper-layer node, all its FIB entries related to the requested
service may have been removed so that it cannot forward
this request. This is because when the upper-layer node for-
wards the request, it has not received the stopping message
so that it has not updated its FIB yet. We can use the NACK
mechanism (as discussed in Section 4.5) to deal with this sit-
uation. That is, the lower-layer node that cannot forward a
request returns a request NACK to the upper-layer node to
let it try another interface. As such, the request would be
routed to a serviceable VM.

This migration policy is seamless. Since during the
migration, all requests can be routed to serviceable VMs
and responded successfully: 1) the requests received by the
source VM before migrating are responded, as the second
rule of the migration policy requires; 2) during the migra-
tion, requests are routed to the other serviceable VMs rather
than the source VM via the load balancing algorithm
directly or the NACK mechanism; 3) after the migration, the
migrated VM becomes serviceable.

5.3 Performance Analysis

Via the VMmigration policy, during the period between the
time when the source VM sends the service stopping mes-
sage and the time when all related FIBs are updated by the
message, some requests may arrive at a switch that cannot
forward them, so they incur request NACKs. In this section,
we will analyze how many requests incur request NACKs
in the worst case, and how much delay are resulted.

Let treq denote the time when an external request is dis-
patched by a gateway, and tmig denote the time when the
migrated VM sends the service stopping message. Let d
denote the single-hop transmission delay.

We take an example to illustrate that the external
requests that satisfy

tmig � 2d � treq < tmig (3)

incur the request NACKs at the layer of ToR switch. As
shown in Fig. 10, the network topology consists of a gate-
way, five switches S0 � S4 and 4 VMs. Only one out of two
VMs connected to each ToR switch provides a service
named A. Suppose the VM connected to switch S3 is about
to migrate. It sends a service stopping message at time tmig.
This message is transferred until it arrives at the core
switch. As illustrated by the timeline in this figure, the ser-
vice stopping message (StopMsg for short) arrives at switch
S3 at time tmig þ d. Upon its arriving, FIB entry hservice A,
interface 1i is removed from S3. The stopping message
arrives at switch S1 at time tmig þ 2d, and then FIB entry
hservice A, interface 1i is removed from S1. Suppose a
request (Req for short) for A is dispatched at treq by the gate-
way. It arrives at aggregation switch S1 at time treq þ 2d
after two hops. If this time is between tmig and tmig þ d, then
S1 may forward the request to S3 based on the FIB informa-
tion at that time. But when the request arrives at S3 after d,
the FIB entry of S3 has been removed. As a result, S3 cannot
forward the request, so it returns an NACK back. When the
NACK arrives at S1 after one hop, although the FIB of S1

has been updated, it can re-forward the request through
another interface. Moreover, if the time treq þ 2d is between
tmig þ d and tmig þ 2d, the request experiences the same

Fig. 9. The VM migration policy in named-service framework.
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process. Thus, we conclude that if Eq. (3) is satisfied, then
the request may incur a request NACK at the ToR layer.

In general, there are two necessary conditions for a
request incurring a request NACK at a routing node: 1) the
request arrives at the node later than or equal to the time
when the node updates its FIB, that is, when the node
receives the service stopping message; 2) the request arrives
at the previous-hop node earlier than the stopping message.
In Fig. 11, we show the arriving time of the request and the
stopping message at each layer of nodes. Then we can
obtain two necessary conditions. For the example in Fig. 10,
the first condition requires that treq þ 3d � tmig þ d and the
second condition requires that treq þ 2d < tmig þ 2d. From
them, we can obtain Eq. (3).

In this way, we can obtain that a request incurs a request
NACK at a VM if

tmig � 4d � treq < tmig � 2d; (4)

and a request incurs a request NACK at an aggregation
switch if

tmig � treq < tmig þ 2d: (5)

Thus, the requests dispatched during the period ½ tmig � 4d;
tmig þ 2d 	with a length of 6dmay incur the request NACKs.
Let lvm denote the load (i.e., average number of requests per
time unit) toward the migrated VM. Then, the number of
affected requests has an upper bound of

lvm � 6d: (6)

The same upper bound can be obtained for the internal traf-
fic in the same manner.

The request NACKs result in extra delay to serve
requests. For the example in Fig. 10, a request NACK is
returned from ToR switch S3 to aggregation switch S1, and
it causes two extra hops for a round-trip. In the worst case,
aggregation switch S1 also has no interface to re-forward
the request when it receives the NACK, so it also has to
return an NACK to core switch S0. As such, four extra hops
are resulted for a round-trip. Similarly, in the worst case, six
extra hops are resulted for a request incurring a request
NACK at a VM, and two extra hops are resulted for a
request incurring a request NACK at an aggregation switch.
The similar results can be obtained for internal requests. In
conclusion, the VM migration policy is seamless in the
named-service framework, and it results in small extra
delay for a small number of requests.

5.4 Performance in IP-Based Networks

Finally, we explain that although the similar VM migration
policy can be used in the IP-based networks, it would result
in service interruptions.

Recall that in the IP-based networks, a central proxy is
responsible for binding the IP address and the location-spe-
cific address of each VM. The IP address is used for identify-
ing a VM, while the location-specific address is used for
routing to a VM. As such, once a VM is migrated to another
location, its IP address is retained, while its location-specific
address is changed. In this IP-based environment, a similar
VM migration policy can be used. Instead of propagating
the service stopping message and the service starting mes-
sage to the switches, these messages are sent to the central
proxy. Once the proxy receives the messages, it updates the
corresponding binding information, so that the requests
will be routed to the new location afterwards. It is noted
that the central proxy has to keep the binding information
within the VMs communicating with the migrated VM con-
sistent with its own. Otherwise, via the inconsistent binding
information, the internal requests between two VMs would
be routed to wrong locations.

However, this migration policy could not avoid service
interruptions. This is because in IP-based networks, the route
is predefined rather than determined on the fly as in our
framework. Thus, when a request arrives at the old location
of a migrated VM, if this VM has stopped receiving new
requests, then the request could neither be responded by the
migrated VM nor be routed to another serviceable VM. Sup-
pose the gateway connected to all the core switches operates
as a central proxy. We can analyze how many requests

Fig. 11. The arriving time of a request (Req) and a service stopping mes-
sage (StopMsg) at each layer of nodes.

Fig. 10. An example of a request incurring a request NACK at the layer of
ToR switch.

3492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 12, DECEMBER 2015



would not be responded in the samemanner as previous. For
the external requests, we conclude that the requests that are
distributed to the migrated VM and are dispatched by the
gateway during the period ½ tmig � 4d; tmig þ 4d 	 would not
be responded, where tmig and d are defined the same as pre-
vious. For the internal requests from other VMs to the
migrated VM, the delay to maintain the consistency
increases the amount of the requests not responded. Since
the requests that are routed with the outdated binding infor-
mation could not be responded.

To summarize, the performance gain of our method is
significant when the request load is heavy. It is particularly
true when VM migrations occur across subnets. Even for
migrations within subnet, no penalty is incurred.

6 PERFORMANCE OPTIMIZATION

In this section, we introduce a distributed load balancing
algorithm to improve the performance of the routing proto-
col, to avoid congestion and hot spots in particular.

Our algorithm is based on the field of capacitymaintained
in FIB. In a FIB entry hservice name, interface, capacityi, the field
of capacity records the total capacity (i.e., the average maxi-
mum number of requests served per time unit) of all the
VMs that provide the service and are reachable through the
interface in this entry. It is maintained via the control mes-
sage protocol as discussed in Section 4.3. In addition, we
assign an equal capacity value to all the candidate interfaces
that are connected to the upper-layer switches, in order to
use the load balancing algorithm in this case.

The load-balancing decision for a service at a switch can
be formulated as an optimization problem. Let l denote the
request load (i.e., the average number of requests arriving
per time unit) for the service arriving at the switch. Suppose
there are n candidate interfaces to distribute the load, and
each interface has an average capacity, that is, the ith inter-
face has capacity ci. Then, our problem is to distribute the
load to the candidate interfaces such that the maximum uti-
lization on the interfaces (denoted by u) is minimized:

min u
s:t:

Pn
i¼1 li ¼ l;

li=ci � u; i ¼ 1; . . . ; n;
li � 0; i ¼ 1; . . . ; n:

(7)

This problem is a classic resource allocation problem,
widely observed in resource scheduling and network opti-
mization. Many algorithms can solve it. We adopt Weighted
Round-Robin Algorithm (WRRA) for its simplicity. In this
algorithm, each interface has a weight wi, which is equal to
ci=GCDðc1; . . . ; cnÞ. GCD is greatest common divisor. This
weight represents how many requests can be forwarded by
an interface in each round. At the beginning of a round,
each interface is assigned tokens whose number is its
weight. At each round, the algorithm forwards an incoming
request to each interface in a circular order unless an inter-
face runs out of tokens. A round keeps until all interfaces
run out of tokens.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance and demonstrate
the advantages of our framework via extensive simulations.

7.1 Simulation Settings

We implement a simulation testbed based on ndnSIM, an
ns-3 based NDN simulator [21]. The testbed has a fat-tree
topology. It consists of 16 physical machines, three layers of
switches, and a gateway which is connected to all the core
switches, as shown in Fig. 12. We let each PM host a VM.
Each switch has a buffer size of 20 packets. Each link has a
bandwidth of 100 Mbps and a transmission delay of 1 ms (if
not explicitly stated). The gateway dispatches a load of
external requests. We set the request packet and the
response packet to 30 and 1,024 bytes, respectively. In this
testbed, we simulate the VM migration by a simple proce-
dure, which consists of sending the service starting mes-
sage, sending the service stopping message and a short
interval between them. Other details, such as memory copy
and image boot, are omitted.

The service time consumed by a VM to process a request
follows an exponential distribution with an average of 1/
capacity. When a VM is busy, a request is added into its
queue to wait the service. The maximum length of the
queue is set to 500, to avoid the request loss due to the
queue overflow in the simulations. The request queue is
small in size since the length of a request packet is short.
For example, it is 15 MB in our case. Thus, it is easy to
increase the queue size to avoid queue overflow in practice.

This testbed serves two purposes: 1) to verify the named-
service framework; 2) to evaluate the performance of the
VMmigration policy and the load-balancing algorithm.

7.2 Adaptive Named-Service Routing

We first verify that the named-service routing protocol can
adapt to system dynamics, by varying the VMs’ capacity.
Specifically, we group every four neighboring physical
machines into a cluster, as shown in Fig. 12. We assign a
default capacity of 20, 40, 100 and 160 requests per second
(req/s) to the VMs in the four groups, respectively. Then, at
the 30th second we change each VM’s capacity to 80 req/s,
and at the 60th second we change the capacities of the VMs
in the four groups to 160, 100, 40 and 20 req/s, respectively.
In addition, we generate a Poisson-arrival load profile with
an arrival rate of 640 req/s. That is, the inter-request time of
the load follows an exponential distribution with an average
of 1/640 s. The load is dispatched by the gateway. We
repeat the simulation for 20 times, each running for 90 sec-
onds, and report the average results.

Fig. 12. The simulation topology.
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We show the allocated load of individual VMs in Fig. 13.
We observe that the allocated load for each VM closely fol-
lows its service capacity. This clearly suggests that the
named-service routing protocol in our proposed framework
adapts to the system dynamics.

We also verify that the load balancing algorithm is effec-
tive. We define the utilization of a VM as the percentage of
its busy time. We measure the utilization per second of indi-
vidual VMs. The above simulation is repeated for 20 times,
each running for 90 seconds. We first average the utilization
per second over 20 times. Then, we report the statistics, that
is, mean and standard derivation, of the utilization per sec-
ond of all the VMs throughout the runtime in Fig. 14. We
observe that the average utilization of the VMs is close to
the optimum, that is, 0.5 in our case.

7.3 VM Migration Policy

In this section, we evaluate the performance of the VM
migration policy. Same as above, we group every four
neighboring physical machines into a cluster. At the begin-
ning, we assign a VM on each physical machine in the first

two groups. All the VMs provide the same service, and
have the same capacity of 300 req/s. The gateway dis-
patches a constant request load of 600 req/s. We set the sin-
gle-hop transmission delay to 10 ms. We migrate all the
VMs in group 1 to the physical machines in group 3. The
migration starts at 7th second, and ends at 9th second. We
conduct a series of simulations to evaluate the load of indi-
vidual VMs, the number of the requests that incur request
NACKs, and the resulted delay.

First, we show the load of individual VMs in Fig. 15. It
illustrates that the allocated loads on individual VMs follow
the change of their capacities, as the VMs migrate. Specifi-
cally, the load allocated to the VMs in group 1 becomes 0
when the migration starts; all of the load is allocated to
group 2 during the migration; and the load is distributed
equally in groups 2 and 3 when the migration finishes.

Second, we evaluate the number of the requests that
incur request NACKs and the resulted delay. As discussed
in Section 5, this is because the upper-layer switches receive
the service stopping message and update their FIBs latter
than the lower-layer switches due to the transmission delay.
We show the hop counts of individual request-response

Fig. 13. The allocated load of individual VMs via the load balancing algo-
rithm. The load is dispatched by the gateway. It is a Poisson process
and has an average arrival rate of 640 req/s.

Fig. 14. The average utilization (percentage of busy time) of the VMs via
the load balancing algorithm, where the bars demonstrate the standard
deviation.

Fig. 15. The allocated load of individual VMs as the VMs are migrated
from group 1 to group 3. The migration starts at 7th second, and ends at
9th second.

Fig. 16. The hop counts of individual request-response pairs.
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pairs around the migration time in Fig. 16. The x-axis is the
time when a request is dispatched by the gateway, i.e., treq.
Recall that the time when the migration starts, i.e., tmig, is 7 s
and the single-hop transmission delay is 10 ms. As analyzed
in Section 5.3, the requests that are dispatched in three inter-
vals incur request NACKs at three layers of nodes, respec-
tively. The three intervals are [6.96, 6.98), [6.98, 7) and [7,
7,02) and the three layers of nodes are VM, ToR switch and
aggregation switch, respectively. Moreover, from the analy-
sis, the resulted extra delay in the three cases are six, four
and two hops, respectively. Since it takes eight hops for a
request dispatched by the gateway to receive a response
without any NACK. Thus, the delay of the request-response
pairs in the three cases are 14, 12 and 10 hops, respectively.
It is observed that the simulation results shown in Fig. 16
are consistent with these analysis results. It is also observed
that in the three intervals only half of the requests incur
request NACKs. This is because, the requests are distrib-
uted equally to the VMs in two groups via the load balanc-
ing algorithm, so only half of the requests that are
distributed to the migrated VMs in the first group incur
request NACKs. In conclusion, this simulation suggests that
the migration policy is seamless, and only results in a short
extra delay for a small number of requests.

Finally, we evaluate the impacts of the single-hop
transmission delay and the amount of the load dispatched
by the gateway on the performance of the VM migration
policy. In this simulation, we first fix the transmission
delay to 10 ms, and vary the amount of the load. Then we
fix the amount of the load to 400 req/s, and vary the
transmission delay. We show the number of the requests
that incur request NACKs and the resulted extra hop
count on average in Fig. 17. It is observed that the num-
ber of the requests that incur NACKs is about three times
as many as the product of the transmission delay and the
amount of the load. For example, when the transmission
delay is 10 ms and the amount of the load is 400 req/s,
the number of the requests incurring NACKs is about 12.
Recall that only half of the load is distributed to the
migrated VMs in group 1. Thus, the simulation result
conforms with the analysis result in Eq. (6). In addition, it

is observed that the resulted extra hop count on average
is four hops, which also conforms with the analysis result.

7.4 Mechanism of Route Learning

In this section, we evaluate the mechanism of route learning
in the case of link failures. Via this mechanism, when an
NACK is received from an interface connected to an upper-
layer switch, the unreachable interface is recorded. We com-
pare it with the basic NACK mechanism, in which the
unreachable interface is not recorded.

In this simulation, we use the topology as shown in
Fig. 18. It consists of 8 VMs and 10 switches S1 � S10. The
leftmost VM provides service A and the rightmost four VMs
provide service B. Suppose service A would like to request
service B. Service A sends a constant load of 600 req/s, and
each service B provides an average capacity of 300 req/s.
Suppose the link between switches S1 and S5 fails (red cross
in the figure). As a result, switch S1 do not know service B,
by using the control message protocol. Thus the NACK
mechanism has to be used to route the requests. We set the
single-hop transmission delay to 1 ms, and run the simula-
tion for 3 s.

Fig. 17. The number of the requests that incur NACKs and the resulted extra hop count on average, as the amount of the load dispatched by the gate-
way or the single-hop transmission delay varies.

Fig. 18. The simulation topology for the mechanism of route learning,
where the link between switches S1 and S5 fails (red cross). The arrows
show a longest path to route a request from service A to service B,
where the solid green ones represent forwarding requests and the
dashed red ones represent forwarding NACKs respectively, and the
numbers beside them represent the order of forwardings.
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We evaluate the first 1,000 requests that receive
responses, and measure the percentage of the requests that
take various hops to arrive at service B. We show the results
in Table 1. It is observed that, by using the mechanism of
route learning, 99.7 percent of requests take six hops to
arrive at service B, by the shortest paths (e.g., service A
! S7 ! S4 ! S2 ! S6 ! S10 ! service B); in comparison,
when this mechanism is not used, 99.7 percent of requests
take 12 hops to arrive at service B. The results demonstrate
that the mechanism of route learning can reduce the delay
to route requests.

When the mechanism of route learning is not used, the
majority of requests take the longest paths (12 hops), as
shown by the arrows in Fig. 18. This is because, at switch S7,
once a request is re-forwarded through the reachable inter-
face, a new request is forwarded through the unreachable
interface by the load balancing algorithm. Thus almost all
requests are forwarded through the unreachable interface
first and then re-forwarded through the reachable interface.
The same procedure happens at switches S3 and S4. As a
result, almost all requests take 12 hops to arrive at service B.

7.5 Scalability

Finally, we evaluate the scalability of our system in various
scale of networks. We simulate the networks that are built
with four-port switches, eight-port switches and 12-port
switches respectively. A fat-tree topology that consists of

k-port switches has k3=4 physical machines [20], thus these
three topologies have 16, 128 and 432 physical machines
respectively. Same as in Section 7.2, we evaluate the average
utilization. We let each PM host a VM, and set each VM’s
capacity to 80 req/s. In addition, we generate a Poisson-
arrival load profile with an arrival rate of 160k req/s, such
that the optimal utilization is 0.5. We show results in Fig. 19.
It is noted that the performance keeps stable as the time
evolves, so we only illustrate the results in three time slots.
As shown in Fig. 19, the utilization is close to the optimum
in large-scale networks.

8 CONCLUSION

In this paper, we investigate the problem of seamless VM
migrations in the DCN. Leveraging the benefit of decou-
pling a service from its physical location in the emerging
technique named data networking, we propose a named-
service framework to support seamless VM migrations. In
comparison with other approaches, our approach has fol-
lowing advantages: 1) the VM migration is interruption-
free; 2) the overhead to maintain the routing information is
less than that caused by classic NDN; 3) the routing protocol
is robust to both link and node failures; 4) the framework
inherently supports the implementation of a distributed
load balancing algorithm, via which requests are distributed

to VMs in balance. The analysis and simulation results ver-
ify these benefits.
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