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Abstract—Many big-data computing applications have been deployed in cloud platforms. These applications normally demand
concurrent data transfers among computing nodes for parallel processing. It is important to find the best transfer scheduling leading to
the least data retrieval time—the maximum throughput in other words. However, the existing methods cannot achieve this, because
they ignore link bandwidths and the diversity of data replicas and paths. In this paper, we aim to develop a max-throughput data transfer
scheduling to minimize the data retrieval time of applications. Specifically, the problem is formulated into mixed integer programming,
and an approximation algorithm is proposed, with its approximation ratio analyzed. The extensive simulations demonstrate that our

algorithm can obtain near optimal solutions.

Index Terms—Data transfer scheduling, big-data computing, throughput maximization, data center

1 INTRODUCTION

ANY big-data computing applications have been

deployed in cloud platforms, e.g., Amazon’s Elastic
Compute Cloud (EC2), Windows Azure, IBM Cloud etc. In
big-data computing under MapReduce framework [1], tasks
run on computing nodes in parallel. But, the data may not
be stored in the same nodes as they are processed for a vari-
ety of reasons. For instance, when those nodes have insuffi-
cient computing capacity, or when they are not preferred by
other objectives (e.g., load balancing and energy saving).

In Data Center Networks (DCN), data are usually repli-
cated for redundancy and robustness, e.g., in HDFS, every
data block has two replicas in addition to the original one
[2]. Furthermore, from each data node, multiple paths are
available for data transfer, sometimes, all of which are
shortest paths, due to path redundancy in DCN [3], [4]. It is
important to select the best node and the best path to
retrieve a non-local data. This is the data retrieval problem.

Different selections of nodes and paths may result in dif-
ferent data retrieval time. It is important to find the selection
leading to the least data retrieval time, because long data
retrieval time of a computing task may result in long com-
pletion time for the application to whom this task belongs.

However, the existing method to retrieve data, which is
used in current HDFS systems and DCN, cannot obtain the
least data retrieval time. In the existing method, when a
non-local data is required, a request is sent to any one of the
closest replicas [2]. Then, the data is transferred from the
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selected node through any one of the shortest paths, deter-
mined by routing protocols like Equal-Cost Multipath Rout-
ing (ECMP) [5] or per-flow Valiant Load Balancing (VLB)
[4]. It is noted that many tasks are retrieving data concur-
rently. This method may result in heavy congestions on
some links, leading to long data retrieval time, because it
ignores link bandwidths and the overlaps of selected nodes
and paths. Some researchers proposed flow scheduling sys-
tems to avoid path collisions [6], [7]. However, they only
exploited path diversity but not data replica diversity.

To minimize the data retrieval time (i.e., to maximize the
throughput) of an application consisting of concurrent tasks,
we propose a max-throughput data transfer scheduling, uti-
lizing both replica and path diversities. In our method, the
problem is formulated into mixed integer programming, and
an approximation algorithm is proposed, with its approxima-
tion ratio analyzed. We also solve the data retrieval problem
for the case of multiple applications. Our simulations demon-
strate that the approximation results are almost as good as the
optimal solutions. We also show that the availability of a small
number of additional data replicas can be greatly beneficial in
many cases, regardless of path diversity.

The rest of this paper is organized as follows. Section 2
presents the overview and the motivation of the data
retrieval problem. Section 3 presents problem formulations,
for the scenarios of a single application and multiple appli-
cations separately. Section 4 presents an approximation
algorithm and the analyses on its approximation ratio. The
simulations and performance evaluations are presented in
Section 5. Section 6 presents the related works on the data
retrieval in cloud. Section 7 concludes the paper.

2 PROBLEM OVERVIEW AND MOTIVATION

In cloud, although data is distributed among computing
nodes, not all data can be obtained locally, so some nodes
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Fig. 1. An example to motivate the optimal data retrieval method. Node
v, is retrieving data a (red dash lines) and v, is retrieving data b (green
solid lines). In (a) both data transfers share common links, which
has more traffic and may lead to longer transmission time, while in
(b) they passes through disjoint sets of links, resulting in shorter data
retrieval time.

may need to retrieve data from distant nodes. A requested
data can be retrieved from one of the nodes where its rep-
lica is stored. When a node is chosen for data retrieval, a
path from it to the requesting node needs to be specified
for data transfer. A reasonable choice would be the short-
est path (in terms of the number of hops). However, there
may exist multiple shortest paths, so one of them must be
selected. It is noted that we select only one node and one
path for each requested data, because otherwise it would
result in multipath TCP, which suffers from high jitter
and is not widely deployed in DCN yet. A naive method
is to select nodes and paths randomly, but it may result in
heavy congestions on some links, leading to long data
retrieval time, because it ignores link bandwidths and the
overlaps of selected paths and nodes.

For example, considering the case of a single application, in
a topology as shown in Fig. 1, two data objects (¢ and b) are
stored with replication factor of 3, and each link has the band-
width of 1 data per second. Note that it takes at least 1 second
to transfer a data between any two nodes. Suppose at the
same time, node v, is about to retrieve data a and v, is about
to retrieve data b, both belonging to the same application,
then the naive method may result in the data retrieval time of
2 seconds; while the optimal solution only takes 1 second. The
naive method has a worse performance, because both data
transfers pass through some common links, becoming bottle-
necks (as shown in Fig. 1a). The optimal solution takes the
least time, because by selecting nodes and paths both data
transfers pass through disjoint sets of links (as shown in
Fig. 1b). This motivates us to investigate the optimal data
retrieval method, where nodes and paths are selected care-
fully. Our objective is to select nodes and paths such that the
data retrieval time of an application is minimized.
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Fig. 2. A typical topology of data center network: a fat-tree topology
composed of 4-port switches.

The naive method also falls short when multiple applica-
tions are running in the cloud, where different applications
may have different requirements, i.e., the upper bound of
data retrieval time. As it may be impossible to satisfy all
requirements, we minimize the penalties of applications.
Thus our problem is to select nodes and paths for each
required data such that the penalties of applications are
minimized.

3 PROBLEM FORMULATION

In this section, we formulate the data retrieval problem. We
start with the case of a single application, and deal with
multiple applications later.

3.1 Single Application

A Data Center Network consists of switches and computing
nodes, as illustrated in Fig. 2. The DCN is represented as a
graph with nodes V' and edges E, ie., G = (V, E), where
each edge represents a bi-directional link. This is a typical
network configuration in DCN. V' consists of both comput-
ing nodes V. and switch nodes V;, that is V = V. U V4. Let
B, denote the bandwidth on link e.

Suppose an application processes a set of data objects
D ={d;,dy,...,dy,...,d,}, which have been stored in com-
puting nodes. For simplicity, we assume that all data objects
have the same size S. A data object is replicated in multiple
nodes for redundancy. Let Vi, C Vi denote the set of nodes
that have data object d;. Let Aj;. denote whether v; needs
data object dj, to run the tasks assigned on it. If v; requires dy,
(i.e., Ajx = 1), we have to select a node v; € V¢, from which
d;. can be retrieved. Each selection forms a flow Z"/, which
represents the data transfer of d; from v; to v;. The set of
possible flows of transferring data dj, to node v; is denoted
by Fj;,. Hence, the set of all flows is

F= U v(j.k) where Ajk,:lFf"" )

Because one and only one node is selected for each retrieval,
exactly one flow in Fj;. can be used. Let binary variable z;
denote whether or not flow f is used, then

waZI

JeF,

Y (j,k) where Aj, = 1. 2)

After selecting a flow, we have to find a path for it.
To shorten data retrieval time, we use shortest paths. Let
P( fL’;) denote the set of paths that can be used to actuate

i’;’-, which are all shortest paths from v; to v;. Let binary

variable y;, denote whether path p is selected to actuate
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flow f, where p € P(f), then,

Z Yo = Ty
)

pEP(f

vV feF. 3)

Only one path will be selected if flow f is used (i.e.,, z; = 1),
and none otherwise (i.e., zy = 0).

Since all flows are transferred concurrently, the data
retrieval time of an application (which is the total time to
complete all data transfers) is dominated by the longest
data transfer time among all flows. Let ¢t; denote the data
transfer time of flow f, then data retrieval time ¢ is com-
puted as

t =max{ty, Y [feF}. (4)

Let r; denote the sending rate of flow f, then the data trans-
fer time of flow f equals to transmission delay as

S
typ= o ®)
The other delays, such as processing delay, propagation
delay and queueing delay, are all negligible, because the
flows of transferring data objects are large in size, e.g., 64
MB in HDFS.

Ideally, the least data retrieval time can be simply
obtained by setting the sending rates of all flows to the max-
imum values possible. However, as multiple flows may
pass through the same link, which has limited bandwidth,
the sending rates of these flows may not be able to reach the
maximum values simultaneously. Suppose F, is the set of
all flows passing through link e, then the aggregate data
rate on link e (i.e., > ., 7¢) is bounded by its bandwidth as

ZT'f < B,. (6)

Jeke

Let P, denote the set of all paths passing through link e. A
flow f passes through link e if its selected path passes
through link e, i.e., 3 p € P(f) N P, such that yz, = 1. Thus,

er:Z Z 5 Ypp < Be. (7)

feF, fEF peP(f)NPe

Replacing 7 in (7) with S/t;, we get

S
JeF peP(f)nPe ’

Note that this constraint is not linear, thus together with
t; < t we transform it to a linear one,

JeF peP(f)NPe

This new constraint means the amount of traffic passing
through each link G.e, > rcr > cp(pan S Ysp) is bounded
by the maximum amount of data that can be transmitted
within data retrieval time (i.e., B.t). In other words, the data
retrieval time is the maximum data transmission time over
all links.

Theorem 1. Constraints (8) and (9) are equivalent.

Proof. To prove the equivalence, we have to prove that any
feasible ¢y to (8) and ¢ to (4) are also feasible to (9), and
vice versa. First, since ¢t > t;,Vf € F, if (8) is satisfied,
then (9) is also satisfied. Second, for any feasible ¢ to (9),
we can easily set all ¢; to ¢, then both (4) and (8) are
satisfied. ad

To sum up, the data retrieval problem is to select nodes
and paths for all requests, such that the data retrieval time
is minimized. The data retrieval time is affected by those
selections through the resulted amount of traffic on each
link. It is formulated into an MIP as follows,

min t (10a)

sty xp=1 Y (j, k) where Ay, =1 (10b)
JeFy

Y up=as VfeF (10c)
peP(f)

> Y Swyp<B.t VeekE (10d)
JeF peP(f)nke
z; € {0,1} VfieF (10e)
Y €10,1} VfeF peP(f) (106)
t>0. (10g)

3.2 Multiple Applications
In cloud, multiple applications run on shared resources
simultaneously to utilize resources more efficiently. To
select nodes and paths for the requests of each application,
a simple approach is to treat all applications as a single one
and to solve the problem using the above model. This is
equivalent to minimize the maximum data retrieval time
among all applications. However, different applications
may have different requirements on their data retrieval
time, the naive approach ignores the difference of require-
ments. Thus, instead of minimizing data retrieval time, we
minimize a penalty.

Given a set of applications U, suppose application v € U
has an upper bound 7, on its data retrieval time ¢,, penalty

¢, is defined as
ty, —t
Cy = Inax{ vt 0}.
b

A penalty is induced if ¢, exceeds a threshold, no penalty
otherwise. The same to the single-application model, ¢, of
application u is dominated by the longest data transfer time
among all its flows, that is

an

t, =max{ty, YV feF,} (12)

where F, is the set of possible flows of application w.
To maintain fairness among applications, we minimize
the maximum penalty denoted by c,

YueU}. (13)

¢ = max{c,,



90 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.6, NO.1,

Thus, our problem is to select nodes and paths for the
requests of each application, such that ¢ is minimized. The
same to the single-application model, the selections affect
which flows pass through each link and the resulted aggre-
gate data rate, restricted by the link bandwidth. But here
aggregate data rate is aggregated over the flows in all appli-
cations rather than a single one. Let ! denote the aggregate
data rate of application « on link e, then

> r<B. (14)
uel
Following the same rule of (7) r! is computed as
7"5 = Z Z ’r‘f . yfp. (15)

fery pEP(f)mPp

Recall that 7 = S/t;, combining above two constraints we
obtain

(16)

PIDIEDD

S
tf Y < Be-
uel feFy peP(Hnk.

Note that this constraint is not linear, thus together with
(11), (13) and (12), we transform it to a linear one,

S
2.2 2 Try we b

uel fely peP(f)NPe

an)

Theorem 2. Constraints (16) and (17) are equivalent.

Proof. To prove the equivalence, we have to prove that any
feasible ¢; and c to the set of constraints (11), (12), (13)
and (16) are also feasible to (17), and vice versa. First, for
a flow f of application v, ie. f¢€ F,, its data transfer
time ¢; must satisfy the following,

by <ty <(cy+1)-1, <(c+1) L. (18)

In above deduction, the first inequality is obtained from

(12), the second inequality is obtained from (11), and the

last one is obtained from (13). Thus, if all ¢; satisfy con-

straint (16), then c satisfies constraint (17).

Second, for any maximum penalty ¢ which satisfies
(17), we can build a set of ¢; satisfying (16), setting ¢, to
the maximum possible value (¢ + 1) -, where f € F, as
follows,

tr=t,=(cu+1) ¢, =(c+1) 1, (19)

That is, all flows of an application have the same data

transfer time, being proportional to the upper bound of

the application, and all applications have the same pen-
alty. All these results satisfy (11), (13), (12) and (16). O

Due to the equivalence proved above, (17) possesses the
same meaning as (14), that is the aggregated data rate of all
applications on each link is limited by its bandwidth. The
difference is that in (17) we set the data transfer time of each
flow to the maximum possible value, i.e., (c + 1) - &,.
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Besides bandwidth constraints, the same as in the case of
a single application, exactly one flow can be used for each
request, and exactly one path can be selected for each used
flow. To sum up, for the case of multiple applications the
data retrieval problem is to select nodes and paths for the
requests of each application, such that the maximum pen-
alty among all applications is minimized. It is formulated
into an MIP, as follows,

min c (20a)
s.t. Z xp=1 V (4, k) where Ay, =1 (20b)
feFy,
> up =1y VieF (20c)
peP(f)
S
33 Zup <B.-(c+1) VeeE (20d)
uel feFy peP(f)NPe tu
zy € {0,1} VfeF (20e)
yp €{0,1} Y feFpeP(f) (20f)
¢ >0. (20g)

3.3 Discussion on Complexity

The data retrieval problems for both cases are NP-hard,
because even when source nodes are determined, the
remaining problem to select paths is NP-hard. When a
source node is determined for each request, a set of com-
modities are formed. Here we call a triple consisting of a
source, a destination, and a demand (i.e., the amount of
data to be routed) a commodity. For the case of a single
application, given the set of commodities and a network,
then our problem is to compute the maximum value 1/¢ for
which there is a feasible multicommodity flow in the net-
work with all demands multiplied by 1/¢, which is a concur-
rent flow problem [8]. Since we have the additional restriction
that each commodity must be routed on one path, the prob-
lem is an wunsplittable concurrent flow problem, which is NP-
hard [8]. It is the same for the case of multiple applications.

4 APPROXIMATION ALGORITHM

We propose an approximation algorithm to solve the data
retrieval problem.

4.1 Max-Throughput Algorithm
Given a data retrieval problem and its MIP formulation, our
algorithm has three major steps: 1) solve its LP relaxation;
2) construct an integral solution from the relaxation solution
using a rounding procedure; 3) analytically compute the
data sending rate of each flow for scheduling.

The LP relaxation can be obtained by relaxing binary var-
iables z; and yj,, whose optimal solution is denoted by z7
and yj,. The rounding procedure constructs an integral

solution z{ and y¢, from fractional solution z} and yj, by

keeping objective value changing as less as possible and
two sets of constraints still satisfied: 1) one-flow constraints,
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that is exactly one flow is used for each request, i.e., (10b) or
(20b); 2) one-path constraints, that is exactly one path is used
for each flow, i.e., (10c) or (20c). We first select the flow that
has the largest 2} for each request to construct 7 satisfying
one-flow constraints. Then we select the path that has the
largest y}, for each flow in use to construct y/f‘-p satisfying
one-path constraints.

With nodes and paths determined, the objective value of
a data retrieval problem can be derived analytically, so is
the data sending rate of each flow. For the case of a single
application, with variables z; and y;, having been deter-
mined, its MIP becomes

min ¢ (21a)

st Y Y Syp<B.-t Vee E (21b)
feF peP(f)NP.

t>0. (21c)

Let Y denote the set of v, then we have

djer ZpeP(mec S-yp
B,

tY) = max{ , Vee E}, (22)

that is the largest data transmission time among all links. As

ty <t(Y), we have ry = % > Ti) To ensure bandwidth con-

straints, the data sending rate of each flow can be set to the
same value as the slowest flow, that is,

S

For the case of multiple applications, with variables x
and ¥y, having been determined, the amount of the traf-
fic of application v on link e (denoted by B!(Y)) is also
determined as

BY) =D > Sy (24)
JEF, peP(f)NPe

The MIP becomes

min ¢ (25a)
s Y
St. Z%U)SBS‘(CJrl) VecE  (25b)
uelU

c>0. (25¢)

Then we have

oY) = max{O, max{ %{m/h,v ccE } - 1}.

(26)

To ensure bandwidth constraints, the data sending rate of
each flow can be setas t; = (c¢(Y) + 1) - ¢, where f € F,, fol-
lowing the analyses in Theorem 2.

We analyze that our algorithm has polynomial complex-
ity. First, it takes polynomial time to solve a LP relaxation in

the first step. Since given a data retrieval problem, there are
polynomial number of variables and constraints in its LP
formulation, and a LP can be solved in polynomial time [9].
Second, the rounding procedure in the second step takes
polynomial time. Since in this procedure each x is compared
once, so is each y. Finally, the last analytical step takes
O(|E|) time to compute (22) or (26).

4.2 Analysis on Approximation Ratio
Next, we analyze the approximation ratio of the above
algorithm.

4.2.1 Single Application

The above approximation algorithm has an approximation
ratio of RL, where R is the replication factor (the number of
replicas) of data, and L is the largest number of candidate
paths that can be used by a flow. Let ¢4 denote the objective
value of an approximation solution, and opT(MIP) denote
the optimal value for an MIP instance, then we have

t* < RL - opt(MIP). 27

In other words,

1
oPT(MIP) > — - t*.

7L (28)

The derivation of the approximation ratio is based on
two facts: 1) the optimal value of the LP relaxation (denoted
by t*) provides a lower bound for the optimal value of an
MIP, that is

opPT(MIP) > t*, (29)

since the solution space of the LP relaxation becomes larger
due to relaxation; 2) the optimal fractional solution y}p and
an approximation solution y;}p satisfy

% 1 A

This can be derived from the process of building approxi-
mation solutions. In constructing yji; for flow f, we have

« 1 .
Vi > o T U, VP EP(f). 31)

[P(f)]

For y}, = 0, yj, > 0 is always valid; for y}, =1, yj, > m
;1:? should be valid; otherwise, one-path constraints would
be contradicted. This is because for flow f, path p whose Y
is the largest is selected, so if y}p where p is selected (.e.,
y?; =1) is less than m -z}, then any other yj, where p is
not selected is also less than (-2}, and finally
Dper(n Y < 2per(y) P T = €}, which contradicts the
one-path constraint. Furthermore, in constructing mj} we
have that for flow f being selected (i.e., x;l =1),

1

Otherwise, one-flow constraints would be contradicted.
This is because for a request, flow f whose z is the largest
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is selected, so if ﬂc} whose flow is selected is less than %,
then any other z; whose flow is not selected is also less
than £, and finally >>: p, 2} < X jcp =1, which
contradicts with the one-flow constraint. Recall that if yj}p
is 1, then rf must be 1, so when yfé] is 1, (32) must be satis-
fied. Thus, we have

1
A A
Vp Zpp Vi G

Based on the above two facts, we can derive the approxi-
mation ratio. Let e* denote the bottleneck link having the
maximum data transmission time in the optimal factional
solution, and e denote the counterpart in an approximation
solution, then we have

opT(MIP) > t* (34a)
B D fer ZpEP( AP S Yy
- (34b)
B.-
> Zfe]«‘ ZpeP(f)ﬁPFA S y}l) (34C)
B,
1A
> ZfeF Zpep(f)nQ,A S- RE Yty (34d)
B,
14
=57 4. (34e)

In the above derivation, (34b) and (34e) are obtained from
(22), (34¢) is because e¢* rather than e is the bottleneck link
in a fractional solution, and (34d) is from the second fact
(30). Therefore, the data retrieval time obtained by the
approximation algorithm is at most RL times greater than
the optimal value.

4.2.2 Multiple Applications

In the same manner, we can obtain that the approxima-
tion algorithm has the same approximation ratio of RL
for the case of multiple applications, but now the approxi-
mation ratio affects penalty plus 1, i.e., ¢ + 1, rather than ¢,
as follows,

*+1 < RL - (opT(MIP) + 1), (35)
where ¢ is the objective value of an approximation solu-
tion, and opT(MIP) is the optimal value for an MIP instance.
(35) means that the worst time ratio obtained by the approx-
imation algorithm is at most RL times greater than the opti-
mal value.

As opT(MIP) > 0,RHS of (35) > RL > 1, thus (35) is valid
if ¢! = 0. Next we prove it is valid if ¢* > 0. Let ¢* denote
the bottleneck link having the largest >, B2(Y*)/t, in the
optimal fractional solution, and e denote the counterpart in
an approximation solution, and let ¢* denote the optimal
value of the LP relaxation, then we have
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OPT(MI Pgr)

Approximation Ratio RL

1 Ronax
R

Fig. 3. opT(MIPgr) and approximation ratio RL may change as R varies,
with L fixed, where MIPy; is an MIP instance formulated after prepro-
cessing with parameters R and L.

opT(MIP) > ¢* (36a)
Bl (Y™)
oo
> % ~1 (36b)
ﬂuA )
douer T
>=— W (36¢)
> B
1 A
w8 (YY)
ZUEU = PZ
“ -1 (36d)
B B, a
1 A
— (" +1)—1. (36¢)

“RL

(36a) is from the fact that the optimal value of the LP
relaxation provides a lower bound for the optimal value of
an MIP. (36b) is obtained from (26). (36¢) is because e* rather
than e is the bottleneck link in the optimal fractional solu-
tion. (36d) is because B(Y*) > - - B(Y), obtained from
(24) and the fact yj, > 7 -y}, (36e) is from the definition
when ¢4 > 0.

4.3 Best Approximation Result

As analyzed previously, approximation results are upper
bounded by approximation ratio RL and the optimal value
of an MIP instance. The lower the upper bound is, the better
approximation results may be. Thus, we may obtain better
approximation results by reducing the upper bound. We
propose a preprocessing procedure to reduce approximation
ratio RL. That is, for each request we randomly select a sub-
set of nodes as source candidates (R in total), and for each
flow we randomly select a subset of paths as routing candi-
dates (L in total), as the inputs of an MIP formulation. As
such, RL is less than the value in the case without prepro-
cessing. However, since data replicas and routing paths are
selected from a subset of nodes and paths rather than the
whole set, the optimal value of the current MIP instance
may be worse than that in the case without preprocessing. If
only one node is selected for each request as candidates,
and only one path is selected for each flow as candidates,
then the solution to the resulted MIP instance is obvious,
which is comparable to the result of naive random selection
method. Thus, with the preprocessing, as R or L decreases,
the approximation ratio decreases, but the optimal value of
the resulted MIP instance may increase, as illustrated in
Fig. 3 where R varies and L is fixed (changes are similar
when L varies and R is fixed). So there exists a pair of R
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32 ToR
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128 computing
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Fig. 4. A three-tier topology of data center network.

and L, such that the upper bound is lowest. With this moti-
vation, we take the preprocessing procedure with various
pairs of R and L, and train the approximation algorithm
on the resulted MIP instances. Then, the best pair of R and
L is selected, which leads to the best approximation result.
It is practical, since it takes polynomial time to run the
algorithm.

It is noted that some flows may be unable to have more
than one candidate paths, which are all shortest paths, e.g.,
any two nodes in the same rack have only one shortest path
in between. In this case, the preprocessing is unnecessary
for those flows, and the value of L is not affected, since it is
determined by the largest set of candidate paths.

4.4 Discussion on Deployment

When deploying our scheduling algorithms in real systems,
the data retrieval problem can be solved once an application
has been distributed in computing nodes, under the band-
width conditions at that time. Once the application starts
running, its data retrieval is scheduled according to precom-
puted results. During runtime, bandwidth conditions may
change due to finishing or starting of other applications. To
adapt to dynamic bandwidth conditions, the data retrieval
problem can be resolved periodically. The length of the
period depends on the tradeoff between computation over-
head and how quickly the scheduling responses to changing
bandwidth.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance extensively and
demonstrate that our algorithm can obtain near optimal sol-
utions, with the availability of additional data replicas and
abundant paths. We also show that in many cases even one
additional replica can improve performance greatly.

5.1 Methods for Comparison

We take two methods in comparison: 1) the optimal algo-
rithm by solving the MIP (OPT for short); 2) the existing
method by randomly selecting nodes and paths (RND for
short), where a node is chosen from all available ones. In
our simulations, both the MIP and the LP relaxation are
solved by Gurobi [10] with a default setting.

5.2 Simulation Setups
We first introduce network topologies and parameters, and
then discuss data retrieval setups.

Our simulation testbed has three types of Data Center
topologies: 1) a fat-tree topology built from 8-port switches;
2) a three-tier topology (as shown in Fig. 4) in which every

4 core switchs

4 aggregation
switches

8 ToR (=)
switches —

160 computing @ ..
nodes

Fig. 5. A VL2 topology of data center network.

four neighboring hosts are connected to a ToR switch, and
every four neighboring ToR switches are connected to an
aggregation switch, and all eight aggregation switches are
connected to each core switch (4 in total); 3) a VL2 topology
[4] with 8-port aggregation and 4-port core switches, as
shown in Fig. 5. Both the fat-tree topology and the three-tier
topology have 128 computing nodes, while the VL2 topol-
ogy has 160 instead.

We set link bandwidths as follows: in the fat-tree and the
three-tier topologies each link is 1 Gbps; in the VL2 topology
each server link is 1 Gbps, while each switch link is 10 Gbps,
the same as in [4]. Since many different applications may
share the network fabric in data centers, we simulate under
two settings: full bandwidth and partial bandwidth in the pres-
ence of background traffic. We generate background traffic
by injecting flows between random pairs of computing
nodes, each of which passes along a random path in
between and consumes 100 Mbps. In order to ensure that
each link has at least 100 Mbps remained, we accept a back-
ground flow only if the currently available bandwidth of
every link along its path is at least 200 Mbps. Otherwise we
reject. The amount of remaining bandwidth depends on
how many background flows are accepted. In our simula-
tions, we inject 400 flows.

The inputs of a data retrieval problem include the
locations of tasks and data objects, as well as access relation-
ships between them. We generate these inputs synthetically.
We place data first, and each data object is stored with repli-
cation factor of 3, as follows: 1) it is first placed in a ran-
domly chosen node; 2) its first replica is stored in a
distinctive node in the same rack; 3) its second replica is
stored in a remote rack. This rule is the same to that in
HDFS [2]. In real applications, most of the data is accessed
locally, not affecting data retrieval time. Thus in simulations
we only consider the non-local data requiring transfers. We
assign tasks randomly on the nodes not having their
required data. There are two types of access relationships
between tasks and data objects: 1) one-to-one, where each
task accesses a unique data object; 2) many-to-one, where
multiple tasks access a common data object. Note that in
both cases, each task only requires one data object to work
with, and this is because other relationships (one-to-many
and many-to-many) are special cases of our consideration.
In many-to-one setting, when a node has several tasks
which access the same data, we assume that the node ini-
tiates only one data request and the retrieved data can be
used by all the tasks.

Both the amount of data and the amount of tasks are var-
ied in simulations. For one-to-one setting, the number of
tasks equals to the number of data objects, both varying
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Fig. 6. The performance of APX with different R and L, where the
dashed lines represent the results of RND (red) and OPT (black). The
APX with R being 2 or 3 perform close to OPT.

from 100 to 1000. For many-to-one setting, the number of
data objects is set to 100, and the number of tasks is varied
from 100 to 1,000. All simulation results are averaged over
20 runs.

5.3 Single Application

We first evaluate the data retrieval time of a single applica-
tion. It is obtained from objective value for OPT, while for
other algorithms it can be computed as in (22). We use the
reduction ratio of data retrieval time over RND to evaluate
the performance improvement of our algorithm G.e,
(tpnp — t)/trnp, Where t is the data retrieval time of the
algorithm being evaluated).

5.3.1 Fat-Tree Topology

We first simulate for a fat-tree topology. We start with run-
ning simulations to find optimal R and L where APX per-
forms best. As now Ryax is 3 and L.y is 16, we try nine
pairs, where R is chosen from {1, 2, 3} and L is chosen from
{1, 4, 16}, both adjusted by the preprocessing of random
selections discussed in Section 4.3. We simulate a scenario
of having 500 tasks and 100 data objects with full bandwidth
and many-to-one access relationship. The performance of
the approximation algorithm (APX for short) in nine set-
tings are shown in Fig. 6, where the results of RND and
OPT are represented by red line and black line respectively.
It is observed that the APX algorithms with R being 2 or 3
perform close to OPT. Thus we choose to evaluate APX
with R =2 and L =1 (APX-R2-L1 for short), besides the
one without the preprocessing (APX-Rmax-Lmax for short).

The results are shown in Fig. 7. It is observed that APX-
R2-L1 performs almost as good as OPT, much better than
RND, and a bit better than APX-Rmax-Lmax. In the topol-
ogy with full bandwidth, the reduction ratio is around
3%~13% for one-to-one setting; while for many-to-one set-
ting it increases significantly (20%~40%) as more tasks

JANUARY-MARCH 2018

3 bottom t 3 middle 1 top 3 bottom 3 middle 1 top t
[ bottom | EEE middle | =3 top | [ bottom | EEE middle |3 top |
@ 1.0 v 1.0
g g
:]C-J' 0.8 ag 0.8
0 0.6 © 0.6
[ fo}
2 0.4 0.4
0.2 0.2
0.0/ 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000

The number of tasks
(a) (b)

Fig. 8. The percentages of each link-type in bottleneck links of RND. (a)
is for one-to-one access relationship; (b) is for many-to-one access rela-
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access each data at the same time. This is because, in RND,
when many tasks access the same set of data objects, some
tasks are possible to choose the same node to retrieve a com-
mon data, resulting in heavy congestions near the selected
node. The more the tasks, the worse the congestions, and
the longer the retrieval time. To verify the locations of the
congestions in RND, we calculate the percentages of each
link-type in bottleneck links (that is where data transmis-
sion time equals to the data retrieval time). There are six
link-types belonging to three layers and two directions. The
results are shown in Fig. 8. Fig. 8b demonstrates that for
many-to-one access relationship as the number of tasks
increases, the bottlenecks mainly consist of the uplinks in
the bottom layer. In comparison, for one-to-one access rela-
tionship, congestions probably happen at any layer of links,
as demonstrated in Fig. 8a.

For the topology with partial bandwidth, the reduction
ratios are significant, as shown in Fig. 7c and Fig. 7d, i.e,,
roughly around 40 percent for one-to-one setting, and
50 percent for many-to-one setting. Both ratios are higher
than that in the case of full bandwidth, because RND
ignores different bandwidths, in addition to path and rep-
lica diversities, which should have been considered in
selecting nodes and paths, as our algorithm does.

We demonstrate that data retrieval time cannot be mini-
mized when we ignore replica diversity. We simulate two
methods. One fully utilizes replica diversity but randomly
chooses a path for each possible flow formed by each replica
(OPT-Rmax-L1 for short), and the other randomly chooses a
replica for each request (ignoring replica diversity) but fully
utilizes path diversity (OPT-R1-Lmax for short). They are
formulated into MIPs and solved optimally. We compare
them to RND and OPT, and show the results in Fig. 9. It is
observed that OPT-Rmax-L1 performs as good as OPT, but
OPT-R1-Lmax performs much worse than OPT, even close
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Fig. 7. The reduction ratio of data retrieval time over RND for a fat-tree topology. (a) is for full bandwidth and one-to-one access relationship; (b) is for
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many-to-one access relationship.
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Fig. 9. The data retrieval time of an application for a fat-tree topology,
using the methods discussed in Section 5.3.1. (a) is for full bandwidth
and many-to-one access relationship, (b) is for partial bandwidth and
one-to-one access relationship.

to RND, in various simulation settings. Thus, it validates the
motivation to exploit replica diversity. In addition, Fig. 9a
illustrates that in the topology with full bandwidth, path
diversity may not improve performance; Fig. 9b illustrates
that in a topology with partial bandwidth, path diversity
may improve performance but not as much as replica diver-
sity does.

5.3.2 Three-Tier Topology

We also simulate for a three-tier topology. Now R, is 3
and L., is 4. We simulate APX-Rmax-Lmax and the APX
with two replicas and one path randomly selected in the
preprocessing (i.e., APX-R2-L1) as above. We show reduc-
tion ratios in Fig. 10. The results are for a topology with
partial bandwidth, and the results for the topology with
full bandwidth are similar, which are omitted due to lim-
ited space. It is demonstrated that both APX algorithms
perform almost as good as OPT, around 6%~17% better
than RND in one-to-one setting, and around 20%~32%
better than RND in many-to-one setting. The reduction
ratios in both cases are lower than that for fat-tree topol-
ogy, because in three-tier topology the difference made
by replica selections or path selections is not as significant
as that in fat-tree topology. Specifically, in three-tier
topology, congestions always happen on the links
between ToR layer and aggregation layer due to oversub-
scribed bandwidths, since each of those links is shared by
four nodes connected to its ToR switch. To mitigate con-
gestions, we can select replicas such that the traffic on
those congestion links can be balanced. However, such
mitigation is less than that for fat-tree topology, because
two replicas in the same rack share a common link
between ToR and aggregation layers, leading to the same
traffic. In addition, we cannot mitigate congestions by
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Fig. 10. The reduction ratio of data retrieval time over RND, for a three-
tier topology with partial bandwidth. (a) is for one-to-one access relation-
ship; (b) is for many-to-one access relationship.
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Fig. 11. The reduction ratio of data retrieval time over RND, for a VL2
topology with partial bandwidth. (a) is for one-to-one access relationship;
(b) is for many-to-one access relationship.

selecting paths, because the data transfers below aggrega-
tion layer have only one path to use.

5.3.3 VL2 Topology

For the VL2 topology as shown in Fig. 5, we simulate APX-
R2-L1 and APX-Rmax-Lmax where R,,.. is 3 and L., is 16.
We show reduction ratios in Fig. 11. The results are for a
topology with partial bandwidth, and the results for the
topology with full bandwidth are similar, which are omit-
ted. It is demonstrated that both APX algorithms perform
almost as good as OPT, around 25%~50% better than RND
in one-to-one setting, and around 30%~60% better than
RND in many-to-one setting. The results are similar to that
in the fat-tree topology, since both topologies have richly
connected links and full-bisection bandwidths.

5.4 Multiple Applications

In this section, we evaluate the performance of multiple
applications. The same to the case of a single application,
we take OPT and RND for comparison. The worst penalty
among all applications is used for evaluation. It is directly

TABLE 1
The Settings of the Upper Bounds on Data Retrieval Time in the Simulation of Two Applications (S)

the number of tasks

topology bandwidth access 100 200 300 400 500 600 700 800 900 1,000
fat-tree partial many-to-one (6,9) (7,11) (9,13) (13,200 (16,24) (17,25) (19,29) (22,32) (23,35  (26,38)
fat-tree partial one-to-one (5,8 (8,12) (12,18) (15,23) (16,24) (23,350 (23,35) (26,39 (29,44) (31,47)
fat-tree full many-to-one (2, 4) 3,5) 4,6) (5,8) 6,9) (7,10) 8,11) (8,12) 9,13) 9, 14)
fat-tree full one-to-one (2,4 (4,5) 4, 6) 5, 8) 6,9) (7,10) (8,12) 9, 13) 9, 13) (11, 16)
three-tier ~ partial many-to-one (37,56) (64,96) (90,135) (112,169) (137,206) (155,233) (171,256) (194,291) (214, 321) (239, 359)
three-tier  partial one-to-one (38,57) (62,94) (92,138) (112,168) (136,204) (157,235) (181,271) (207,311) (228, 342) (241, 361)
VL2 partial many-to-one (4,6) (6,10) (8,12) (8,13) (10,15 (11,170 (13,190 (15,23) (16,23) (15,23)
VL2 partial one-to-one  (4,6) (7,10) (8,12) (10,15 (10,15 (14,21) (15,23) (19,28) (20,29) (22,33)
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APX with R = 2 and L = 1 performs closest to OPT.

obtained from objective value for OPT, while for APX and
RND it can be computed as in (26).

5.4.1 Fat-Tree Topology

We simulate two applications having separate data retrieval
setups, each of which is generated as introduced in
Section 5.2. We set different upper bounds on their data
retrieval time. The optimal data retrieval time in the case of
a single application (obtained from OPT) is used as a base-
line. One upper bound is set to 1.2 times, and the other is set
to 1.8 times as much as the baseline. The settings are listed
in Table 1, averaged over 20 runs.

We also start with running simulations to find optimal R
and L where APX performs best. Nine pairs of R and L are
tried, where R is chosen from {1, 2, 3} and L is chosen from
{1, 4, 16}. We simulate a scenario of two applications each
having 500 tasks and 100 data objects with many-to-one
access relationship under full bandwidth. The performance
of APX in nine settings are shown in Fig. 12, where the
results of RND and OPT are represented by red line and
black line respectively. It is observed that the APX with
R =2 and L =1 performs closest to OPT. Thus we choose
to evaluate APX with this setting (i.e., APX-R2-L1), besides
the one without the preprocessing (i.e., APX-Rmax-Lmax).

Next we evaluate the performance for two-application
scenario. We show results in Fig. 13. For full bandwidth as
shown in Figs. 13a and 13b, it is observed that APX-R2-L1
performs almost as good as OPT, and RND is much
worse than OPT, with APX-Rmax-Lmax being in between.
In one-to-one setting, APX-R2-L1 reduces penalty by
15 percentage points roughly, and in many-to-one
setting, it reduces penalty by 20~60 percentage points.
APX-Rmax-Lmax is usually better than RND, and is com-
parable with RND in some settings of few tasks. For partial
bandwidth as shown in Figs. 13c and 15b, it is observed
that APX algorithms with both parameters perform close
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Fig. 14. The worst penalty of two applications for the fat-tree topology
with full bandwidth and many-to-one access relationship, using the
methods discussed in Section 5.3.1.

to OPT, and significantly better than RND. In one-to-one
setting, both APXs reduce penalty by 25~90 percentage
points, and in many-to-one setting, they reduce penalty by
70~200 percentage points.

We also demonstrate that for the case of multiple appli-
cations, penalty cannot be minimized if we ignore replica
diversity. We simulate OPT-Rmax-L1 and OPT-R1-Lmax
(discussed in Section 5.3.1), and compare them to OPT and
RND. Remind that in OPT-R1-Lmax, replica diversity is
ignored, as data replica is randomly selected. The results
for the fat-tree topology with full bandwidth and many-to-
one access setting are shown in Fig. 14, and the results for
other settings are similar, which are omitted due to limited
space. It is observed that OPT-Rmax-L1 performs as good
as OPT, but OPT-R1-Lmax performs much worse than
OPT, similar to RND. Thus, it validates our motivation to
exploit replica diversity.

5.4.2 Three-Tier Topology and VL2 Topology

We also simulate the case of two applications in a three-
tier topology and a VL2 topology. The upper bounds on
their data retrieval time are set as discussed previously,
listed in Table 1. The simulation results for the three-tier
topology are shown in Fig. 15, and that for the VL2 topol-
ogy are shown in Fig. 16. We only show the results for
partial bandwidth, and the results for full bandwidth are
similar, which are omitted due to limited space. It is
observed that both APX algorithms perform close to OPT,
much better than RND. For the three-tier topology, APX
algorithms reduce penalty by 5~20 percentage points in
one-to-one setting, and reduce penalty by 20~50 percent-
age points in many-to-one setting. For the VL2 topology,
they reduce penalty by 37~65 percentage points in one-
to-one setting, and reduce penalty by 87~260 percentage
points. All of these results demonstrate that our
algorithm is effective.
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6 RELATED WORKS

We review the existing works related to the data retrieval
problem, and categorize them into three groups: traffic
scheduling (in three levels), replica selection, and joint rep-
lica selection and routing.

6.1 Packet-Level Traffic Scheduling

Dixit et al. in [11] argued that packet-level traffic splitting,
where packets of a flow are sprayed through all available
paths, would lead to a better load-balanced network and
much higher throughput compared to ECMP. Tso and
Pezaros in [12] proposed to improve link utilization by
implementing penalizing exponential flow-spliting algo-
rithm in data center.

6.2 Flow-Level Traffic Scheduling

Greenberg et al. in [4] proposed using per-flow Valiant Load
Balancing to spread traffic uniformly across network paths.
Benson et al. in [13] developed a technique, MicroTE, that
leverages the existence of short-term predictable traffic to
mitigate the impact of congestion due to the unpredictable
traffic. Al-Fares et al. in [6] proposed a flow scheduling sys-
tem, exploiting path diversity in data center, to avoid path
collisions. Cui and Qian in [14] proposed Distributed Flow
Scheduling (DiFS) to balance flows among different links
and improves bandwidth utilization for data center net-
works. Alizadeh et al. in [15] proposed a very simple design
that decouples flow scheduling from rate control, to provide
near-optimal performance.

6.3 Job-Level Traffic Scheduling
Chowdhury et al. in [7] proposed a global network manage-
ment architecture and algorithms to improve data transfer
time in cluster computing. They focused on the massive
data transfer between successive processing stages, such as
shuffle between the map and reduce stages in MapReduce.
Dogar et al. in [16] designed a decentralized task-aware
scheduling system to reduce task completion time for data
center applications, by grouping flows of a task and sched-
uling them together.

Although these traffic scheduling methods can be used to
schedule flows in data retrievals, but they do not optimize
replica selections for flows, which we focus on.

6.4 Replica Selection in Data Grids

AL-Mistarihi and Yong in [17] researched on the replica
selection problem in a Grid environment that decides
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Fig. 16. The worst penalty of two applications for a VL2 topology with
partial bandwidth. (a) is for one-to-one access relationship; (b) is for
many-to-one access relationship.

which replica location is the best for Grid users. Their
aim is to establish fairness among users in selections.
Rahman et al. in [18] proposed replica selection strategies
to minimize access latency by selecting the best replica.
These works do not consider the impact of route selec-
tions on data transfer time.

6.5 Joint Replica Selection and Routing

Valancius et al. in [19] designed a system that performs joint
content and network routing for dynamic online services.
The system controls both the selection of replicas and the
routes between the clients and their associated replicas.
They demonstrated the benefits of joint optimization. With
similar goals, Narayana et al. in [20] proposed to coordinate
modular mapping and routing systems, already owned by
OSP, to achieve global performance and cost goals of a joint
system. Xu and Li in [21] distributed the joint optimization
for scale. These works for wide area networks are inapplica-
ble to data center networks, because data centers have
much different traffic and data access patterns.

7 CONCLUSION

In this paper, we investigate the data retrieval problem in
the DCN, that is to jointly select data replicas and paths for
concurrent data transfers such that data retrieval time is
minimized (i.e., throughput is maximized). We propose an
approximation algorithm to solve the problem, with an
approximation ratio of RL, where R is the replication factor
of data and L is the largest number of candidate paths. We
also solve the data retrieval problem for the case of multiple
applications, keeping fairness among them. The simulations
demonstrate that our algorithm can obtain near-optimal
performance with the best R and L.
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