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Abstract—With the recent development of wireless communi-
cation, sensing, and computing technologies, Internet of Vehicles
(IoV) has attracted great attention in both academia and indus-
try. Nevertheless, it is challenging to process time-critical tasks
due to unique characteristics of IoV, including heterogeneous
computation and communication capacities of network nodes,
intermittent wireless connections, unevenly distributed workload,
massive data transmission, intensive computation demands, and
high mobility of vehicles. In this article, we propose a two-layer
vehicular fog computing (VFC) architecture to explore the syn-
ergistic effect of the cloud, the static fog, and the mobile fog on
processing time-critical tasks in IoV. Then, we give a motivational
case study by implementing a prototype of a traffic abnormity
detection and warning system, which demonstrates the necessity
and urgency of developing adaptive task offloading mechanisms
in such a scenario and gives insight into the problem formula-
tion. Furthermore, we formulate the offloading model, aiming at
maximizing the completion ratio of time-critical tasks. On this
basis, we propose an adaptive task offloading algorithm (ATOA).
Specifically, it adaptively categorizes all tasks into four types
of pending lists by considering the dynamic requirements and
resource constraints, and then tasks in each list will be coop-
eratively offloaded to different nodes based on their features.
Finally, we build the simulation model and give a comprehensive
performance evaluation. The results demonstrate the superiority
of ATOA.

Index Terms—Adaptive offloading, fog computing, Internet of
Vehicles (IoV), time-critical task.
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I. INTRODUCTION

INTERNET of Vehicles (IoV) is stepping into a new era
with recent advances on wireless communications, sens-

ing, and computation technologies. Dedicated short-range
communication (DSRC) is regarded as one of the de facto
communication technologies for IoV [1], which enables vehi-
cles equipped with onboard units (OBUs) to communicate with
both vehicles and roadside units (RSUs) via vehicle-to-vehicle
(V2V) and vehicle-to-infrastructures (V2I) communications,
respectively. Meanwhile, the rapid development of cellular
networks and 5G technologies makes the long-term evolution-
vehicle (LTE-V) and cellular vehicle-to-everything (C-V2X)
become promising technologies to support large-scale, low-
latency, and high-reliable communications for IoV [2]. Thus,
it is envisioned that a variety of wireless communication
interfaces with heterogeneous capacities will coexist in future
IoV environments.

Meanwhile, various intelligent transportation systems (ITSs)
impose great demands on massive data transmission and inten-
sive task computation with stringent time constraints, such
as high-resolution video crowdsourcing [3], traffic congestion
detection, and collision warning [4]. Clearly, solely based on
traditional cloud computing-based services cannot meet the
real-time requirement of such applications due to the compe-
tition of limited wireless bandwidth and the high overhead of
centralized scheduling.

Many researches have studied on the fog computing
paradigm in IoV since vehicles and infrastructures at the edge
of the network become more powerful with respect to compu-
tation, communication, and storage capabilities. Specifically,
different types of vehicular fog computing (VFC) architectures
have been designed for supporting low latency and high quality
services in IoV [5]–[9]. Due to highly heterogeneous environ-
ments in IoV, as well as dynamic requirements of different
ITS applications, a lot of studies focused on task offload-
ing [10]–[13], resource management [14], [15], and data
scheduling [16]–[19] problems in IoV. Distinguishing from
previous studies, this article focuses on the task offloading
via different wireless communication interfaces with heteroge-
neous capacities in IoV, and meanwhile, it incorporates vehicle
mobility and time constraint of tasks into consideration.

The main challenges on task offloading in such an envi-
ronment are summarized as follows. First, it is expected to
best exploit the heterogeneous communication capacities in
terms of radio coverage and data transmission rate to balance
the workload on task offloading. Second, the heterogeneous
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computing and storage capacities of different nodes as well
as the high mobility of vehicles make it nontrivial to select
the most appropriate node for task offloading. Last but not
least, the time-constraint of tasks and the highly dynamic ser-
vice environment make it even more challenging on searching
optimal solutions.

With above motivations, this article is dedicated to inves-
tigating on adaptive offloading for time-critical tasks in IoV.
Specifically, a VFC-based architecture is presented to enable
the cooperation among the cloud and fog nodes. Then, we
implement a system prototype, which gives insight into
the problem formulation. Furthermore, a task offloading
model is formulated. On this basis, we propose an adaptive
task offloading algorithm (ATOA) to maximize the task
completion ratio (TCR). The main contributions of this article
are outlined as follows.

1) We propose a two-layer VFC architecture, which con-
sists of the cloud nodes, static fog nodes (SFNs),
and mobile fog nodes (MFNs). The network nodes
have different communication interfaces as well as het-
erogeneous computation, communication, and storage
capacities. On the other hand, vehicles may submit
tasks with deadlines, which are offloaded to different
network nodes based on a certain scheduling algo-
rithm. Furthermore, we implement a system prototype,
which represents a typical time-critical application in
IoV. The analysis based on the system prototype fur-
ther motivates the necessity of adaptive task offloading
in such a scenario and gives insight into the problem
formulation.

2) We formulate an adaptive task offloading problem.
Specifically, we first analyze and model four types
of delays, including the transmission delay, waiting
delay, computing delay, and task delay. On this basis,
the diverse resources requirements, the heterogeneous
capabilities, and the high mobility of vehicles are
jointly considered to analyze task offloading procedures.
Finally, the optimization problem is formulated with
the deadline constraints of tasks, aiming at maximizing
the TCR.

3) We propose an ATOA, which consists of three com-
ponents. First, we design a delay-driven classification
policy to divide tasks into two categories. Then, we
design a resource-driven division policy to construct the
four types of pending lists, which form the basis for
searching valid candidate offloading nodes. Finally, we
propose a deadline-driven offloading policy to collabo-
ratively offload tasks from different lists to appropriate
nodes so as to maximize overall TCR.

The remainder of this article is organized as follows.
Section II reviews the related work. Section III proposes
the system architecture. Section IV gives a motivational
case study by implementing a system prototype, and Section
V formulates the task offloading problem. Section VI
proposes the ATOA. Section VII builds the simulation
model and gives performance evaluation. Finally, we con-
clude this article and discuss future research directions in
Section VIII.

II. RELATED WORK

A great number of studies have investigated data dissem-
ination problems in IoV. Considering a roadside-to-vehicle
communication system, Liu et al. [16] proposed a heuris-
tic scheduling algorithm to enhance the temporal data dis-
semination performance under different traffic scenarios and
application requirements. The work [17] studied on coopera-
tive scheduling for data dissemination via the hybrid of I2V
and V2V communications, and proposed an online scheduling
algorithm to enhance the performance. Targeting at mini-
mizing both the service delay and the network access cost,
Dai et al. [18] proposed a coding-assisted multiobject evo-
lutionary algorithm to optimize the data broadcast efficiency
and network interface selection. Ali et al. [19] investigated
the effect of heterogeneous data sizes in network coding and
proposed a dynamic threshold-based coding-assisted approach
for serving on-demand real-time requests in accessing hetero-
geneous data items in IoV. Furthermore, based on different
data rates supported by DSRC, they proposed an enhanced
method named inverse of slack time multiply distance with
THRESHOLD (�) (ISXD�) to reduce system response time.

To support low-latency and high-reliability services, many
studies have investigated on new architectures in IoV.
Hou et al. [5] presented a VFC-based architecture, in which
vehicles are considered as mobile infrastructures to improve
the computation performance and mitigate the cost of addi-
tional infrastructure deployment. Wang et al. [6] proposed a
novel collaborative vehicular-edge computing (VEC) frame-
work, which supports more scalable vehicular services and
applications via both horizontal and vertical collaborations.
Ning et al. [7] constructed a three-layer VFC model, con-
sisting of the cloud layer, cloudlet layer, and fog layer, to
enable distributed real-time traffic management and mini-
mize the response time. Furthermore, they summarized and
highlighted research challenges and open issues toward VFC-
enabled traffic management. Huang et al. [8] discussed the
potential benefits, security, and forensic challenges in VFC.
Furthermore, a fog-assisted traffic control system has been
proposed as a use case, which is designed to deliver bene-
fits, such as reducing road traffic congestion and car accidents,
including two subsystems: one responsible for the local area
and one responsible for the global area. Liu et al. [9]
proposed a hierarchical system architecture for synthesizing
the paradigms of software-defined networking and fog com-
puting in IoV and exploiting their synergistic effects to support
large-scale, real-time, and reliable information services.

There have been many studies on task offloading in IoV.
Tang et al. [20] studied on the task offloading in the VEC
system, where tasks are offloaded to VEC servers. They for-
mulated the delay minimization problem as a temporal–spatial
mixed-integer nonlinear programming problem. Furthermore,
they divided the problem into two subproblems, including
task placement and delayed offloading. Then, they developed
a two-stage decision tree algorithm and a dynamic program-
ming algorithm to solve the problems. Wu et al. [21] studied
on the task offloading scheme in the 802.11p-based VFC
system, where tasks are only offloaded to neighboring vehi-
cles. They derived and analyzed the transmission delay and
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task arrival rate based on the 802.11p standard. Furthermore,
they designed a semi-Markov decision process (SMDP) to
formulate the task offloading problem and utilized an iteration
algorithm to maximize the long-term reward of the system.
Zhu et al. [22] studied on the latency and quality optimization
for task offloading in the VFC system. Specifically, they
designed a dynamic task allocation (DTA) solution, called
Folo, to optimize service latency and quality loss of results
(QLRs) under the application-specific requirements, e.g.,
communicating and computing demands. Furthermore,
they used linear programming-based optimization (LBO)
and binary particle swarm optimization (BPSO) to
solve it.

Recently, there are a number of studies investigated on
task offloading and resource management problems in IoV
based on deep learning technologies. Ning et al. [23] stud-
ied on the energy-efficient computation offloading scheme
in a three-layer architecture in IoV, which includes lay-
ers of cloudlet, RSUs, and fog nodes. They formulated the
energy consumption minimization problem and divided it
into two subproblems, including flow redirection for bal-
ancing the processing load among fog nodes and offload-
ing decision for minimizing the average energy consump-
tion of task offloading. Furthermore, they constructed an
Edmonds–Karp algorithm-based scheme and a double deep
Q-network (DDQN)-based algorithm to solve the problems.
Qiao et al. [24] designed a novel edge caching framework
based on the cooperation among base station, RSUs, and
vehicles, and modeled the cooperative caching problem as
a double time-scale Markov decision process (DTS-MDP),
where the policy decisions of content placement/updating,
vehicle scheduling, and bandwidth allocation occur on dif-
ferent time scale. The objective of cooperative caching is to
achieve an optimal tradeoff between the total caching cost
and the average content delivery latency. Furthermore, they
proposed a DDPG-based cooperative caching scheme to solve
the problem. Ning et al. [12] integrated a DRL method to solve
the optimization of task scheduling and resource allocation
in the VFC system. First, they modeled both the commu-
nication and computation states by finite Markov chains,
and formulated the task scheduling and resource allocation
strategy as a joint optimization problem to maximize users’
Quality of Experience (QoE). Then, they divided the origi-
nal problem into two suboptimization problems. In the first
stage, they defined a utility function to quantize the level
of QoE, and a two-sided matching scheme is proposed with
the purpose of maximizing the total utilities. While in the
second stage, the decision making of resource allocation is
resolved by leveraging a DRL algorithm, whose target is to
maximize the cumulative reward through obtaining the optimal
policy.

Although there have been extensive studies on data schedul-
ing algorithms, service architectures, task offloading, and
resource management policies in IoV, as far as we know,
this article makes the first efforts on considering adaptive
offloading for time-critical tasks in a heterogeneous vehicular
communication environment.

Fig. 1. Adaptive task offloading in a heterogeneous IoV.

III. SYSTEM ARCHITECTURE

A. System Overview

As shown in Fig. 1, the system architecture consists of two
layers, namely, the cloud layer and the fog layer. In the cloud
layer, the remote cloud servers are connected to base stations
through the core network, and vehicles can offload tasks to
the cloud server via vehicle-to-cloud (V2C) communication.
In the fog layer, the static infrastructures, such as RSUs and
5G micro base stations are connected with each other via wired
connections, which are regarded as the SFNs. Different SFNs
may have different communication, computation, and storage
capacities. Vehicles in the coverage of an SFN can offload
their tasks to SFN via vehicle-to-infrastructure (V2I) commu-
nications. Also, vehicles may execute the tasks locally, which
are considered as the MFNs.

In the following, we present an overview of the system’s
operational flow. First, the network nodes, including SFNs
and cloud nodes, update their status to the control center via
the core network periodically, including their available com-
munication, computation, and storage resources. Meanwhile,
vehicles/MFNs are also required to update their real-time sta-
tus to the control center via the cellular network, including
both physical (e.g., locations, velocities, heading directions,
etc.) and cyber (e.g., submitted tasks, available resources,
etc.) information. Second, the control center makes offloading
decisions based on real-time system workloads and status. In
particular, the tasks can be scheduled to be processed locally
(i.e., MFNs) or to be offloaded to the SFNs or the cloud node.
Finally, the control center notifies the offloading decisions
to the corresponding network nodes via the control mes-
sage. Then, the cloud node, SFNs, and MFNs collaboratively
perform the task offloading operations.
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As shown in Fig. 1, V1, V2, and V3 are scheduled to process
the task locally as MFNs. Outstanding tasks are queued in the
task pending list and will be processed based on a first-come–
first-served policy. Such a schedule can save the bandwidth for
raw data transmission, but it may cause long task waiting delay
of processing time due to the limited computation capability
of terminals. Also, note that V2 is scheduled to offload their
tasks to S1. First, the raw data have to be uploaded via V2I
communication. Then, after the task is processed, the result
should be returned to V2. To be elaborated below, the vehi-
cle mobility may have significant impacts to the final service
performance in such a case. Finally, all vehicles are scheduled
to offload other tasks to the cloud via V2C communication.
We assume that the cloud server has infinite computation and
storage capacity, and hence, the task can be processed imme-
diately as long as data is uploaded. However, note that the
competition of limited cellular network bandwidth may result
in an excessively long time for raw data transmission.

B. System Characteristics

The presented two-layer VFC architecture is unique with
respect to the following characteristics.

1) First, the architecture synthesizes the heterogeneity
of both communication interfaces and computation
resources in IoV into consideration for task offloading.
Specifically, different communication interfaces may
have different data transmission rates and radio cover-
ages, which may have great impacts on the delay of
raw data transmission. On the other hand, the differ-
ent computation capacities of different network nodes
will affect the task waiting time and processing delay.
Therefore, it is critical to strike a balance on task
offloading to maximize the efficiency of heterogeneous
communication, computation, and storage resources in
IoV.

2) In addition, the architecture pays particular attention to
the effect of vehicle mobility on task offloading. First,
considering vehicles may have short connections with
each other due to high mobility, the tasks are only
allowed to be processed locally when vehicles act as
MFNs. Second, when offloading tasks to SFNs, the vehi-
cles must be within the coverage of SFN during raw data
transmission. Otherwise, it is a failed offloading. Finally,
even the raw data could be transmitted to the SFN suc-
cessfully, the vehicle may still leave the coverage of the
SFN during task processing. Then, the cloud server will
be cooperated to return the result to the corresponding
vehicle. Clearly, extra delay cost will be modeled in such
a case.

3) Last but not least, this architecture considers the offload-
ing of time-critical tasks. Specifically, tasks are asso-
ciated with different deadlines based on particular
application requirements. Vehicles have to retrieve the
task processing results before the stipulated deadline.
Otherwise, the task is failed. Therefore, unlike conven-
tional task offloading strategies in IoV, which mainly
focused on minimizing average task processing time, the
target of this service scenario is to complete as many

TABLE I
TASK FEATURES

TABLE II
AVAILABLE RESOURCES

tasks as possible before their deadlines. Clearly, the
distinction of the objective makes the problem unique,
and accordingly, novel solutions are expected to be
developed.

C. Example

We give an example to further illustrate the presented
system as well as to reveal the challenges of adaptive task
scheduling. As shown in Fig. 1, there are three vehicles V1,
V2, and V3 within the coverage of the SFN S1, and the tasks
submitted by each vehicle are denoted by t1,1, t1,2, etc. Table I
summarizes the task features, including the data size (θ ),
required computation resources (c), deadline (γ ), and the result
size (d). Assume that the three vehicles submit their tasks at
time t0. Furthermore, the remaining dwell time (ϕ) of each
vehicle is also stated in Table I, which can be estimated based
on existing state prediction technologies [25]. On the other
hand, Table II shows the features of heterogeneous network
nodes, including the storage capacity (C), available computa-
tion resource (f ), and transmission rate (R) of different network
nodes, as well as the transmission rate (τ ) of the core network.
Note that the transmission delay from the cloud server to vehi-
cles includes both the core network transmission delay and
the cellular network transmission delay, which is computed
by d/RCloud+ d/τ.

Furthermore, due to vehicle mobility, the task offloading
could not be completed if the vehicle has left the radio cover-
age of an SFN during raw data transmission. Therefore, from
the statistics shown in Tables I and II, the data transmission
time of offloading the task t2,1 to S1 is 2 time unit, while
the remaining dwell time of V2 in S1 is 1.5 time unit. Thus,
the task t2,1 cannot be offloaded to S1. Moreover, even if the
raw data can be transmitted to an assigned SFN, vehicles may
leave its coverage during the task computation period. In such
a case, the result will be forwarded to the cloud node, and
then it is delivered to the corresponding vehicle. As noted
from this example, when offloading the task t2,2 to S1, its data
transmission time and the computing delay are 1 time unit and
1.33 time unit, respectively, while the remaining dwell time of

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 06,2021 at 02:38:31 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ADAPTIVE OFFLOADING FOR TIME-CRITICAL TASKS IN HETEROGENEOUS INTERNET OF VEHICLES 8003

TABLE III
COMPARISON OF DIFFERENT SCHEDULING STRATEGIES

V2 in S1 is 1.5 time unit, which implies that V2 leaves the radio
coverage of S1 before the computation completed. Thus, the
result transmission time consists of the transmission time from
S1 to the cloud server (d/τ) and the transmission time from
the cloud server to the corresponding vehicle (d/RCloud+d/τ),
which is 0.125 + 0.196 ≈ 0.32 time unit. Note that if V2
is still in the coverage of S1, the result transmission time
would be d/RS1 = 0.1 time unit. Clearly, the mobility of vehi-
cles may affect system performance if the task could not be
appropriately offloaded.

With the above knowledge, we compare three offloading
strategies, which are shown in Table III. Specifically, the
MFN-first (MF) strategy always prefers to offload the tasks to
the local vehicle. First, given task deadlines and computation
resource requirements, tasks t1,2, t2,1, and t3,1 will be offloaded
to the local MFN since they can be completed before the dead-
line. Then, t1,1 and t3,2 are offloaded to S1, which results that
task t1,3 has to be offloaded to the cloud. Nevertheless, task
t2,2 will miss its deadline with such a schedule. Thus, the TCR
of MF is 86%. The cloud-first (CF) strategy always prefers to
offload the tasks to the cloud node. First, t1,1, t1,3, and t3,2 can
be completed in the cloud node. Then, only t1,2 is offloaded to
S1 since the others cannot satisfy their deadline requirements.
Finally, t2,1 and t3,1 can be completed in time by processing
them locally. However, as observed, t2,2 will miss its deadline
with such a schedule. Thus, the TCR of CF is 86%. Finally,
we may observe that the optimal solution is to offload t1,1, t1,3,
and t3,2 to the cloud node, and offload t2,2 to S1. Meanwhile,
t1,2, t2,1, and t3,1 are executed in the local MFNs. In such a
schedule, all the tasks can be completed before their deadlines,
given the 100% completion ratio.

IV. MOTIVATIONAL CASE STUDY

In this section, we implement the prototype of a traffic
abnormity detection and warning (TAD&W) system, which
represents a typical time-critical task offloading application in
IoV. The observed results based on the system prototype fur-
ther motivate the necessity of the investigated problem and
gives insight into the problem formulation.

A. Prototype Implementation

The primary objective of the TAD&W system is to detect
traffic abnormities based on real-time video recorded by a
vehicle and send warning messages to other vehicles, so that
relevant vehicles can respond in time to enhance driving safety
and improve traffic efficiency. Clearly, such a system proto-
type involves massive data transmission (e.g., recorded video)
and intensive computation (e.g., abnormity detection). Besides,
the tasks have to be completed within a certain time con-
straint. Otherwise, it may compromise system performance or

(b)

(a)

Fig. 2. System prototype. (a) Tasks are offloaded to MFN/Cloud. (b) Tasks
are offloaded to SFN.

even cause serious consequences. Therefore, such a system
prototype captures key features of our concerned applica-
tion scenario, and hence it is suitable to be adopted as a
motivational case study.

Fig. 2 shows the hardware-in-the-loop system prototype.
In particular, Fig. 2(a) implements the system architecture in
which tasks can be offloaded to either MFNs or the cloud. The
configuration is described as follows. A cloud node is config-
ured with 3.2-GHz CPU and 32-GB memory, and a notebook
connected with an OBU is considered as a mobile fog node
(MFN1), which is configured with 2.3-GHz CPU and 8-GB
memory. Meanwhile, another mobile fog node (MFN2) is con-
figured with 2.3-GHz CPU and 8-GB memory. Both MFN1
and MFN2 can communicate with the cloud server via the 4G
interface, and they can communicate with each other via the
DSRC interface. Fig. 2(b) shows the system architecture in
which tasks can be offloaded to the SFN, and the configura-
tions are described as follows. Two notebooks connected with
two OBUs act as MFN1 and MFN2, which are configured with
2.3-GHz CPU and 8-GB memory, respectively. Meanwhile,
another notebook connected with two RSUs, act as SFN1 with
the configuration of 3.2-GHz CPU and 12-GB memory. Both
MFN1 and MFN2 can communicate with SFN1 via the DSRC
interface.

With the above configuration, the system operational flow is
described as follows. MFN1 generates videos with the frame
rate of 10 frames/s. The task is to detect the traffic abnormity
from the video frames. Once it is detected, the corresponding
frame will be extracted and send to the other MFN together
with warning messages. To implement the traffic abnormity
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TABLE IV
DELAY COMPARISON OF DIFFERENT OFFLOADING POLICIES

detection, we adopt the database from [26], in which there
are 1750 videos, consisting of 620 positive samples and 1130
negative samples. Then, the MobileNet_SSD model [27] is
adopted for training the samples. 903 selected video clips are
selected as the training set and 166 clips are adopted as the
testing set. The trained model is installed on the cloud node,
the SFN, and the MFNs for abnormity detection based on
different offloading modes.

Furthermore, we implement three task offloading modes.
1) For cloud-based offloading, MFN1 transmits its raw data

to the cloud node, and the cloud node executes the
trained model based on received videos and transmitted
the warning message to MFN2.

2) For SFN-based offloading, the raw data are transmitted
to SFN1, where the abnormity detection is executed and
the warning message is transmitted to MFN2.

3) For MFN-based offloading, MFN1 executes the abnor-
mity detection locally and sends the warning message
to MFN2.

B. Observations

Table IV shows the average computing delay, transmission
delay, and task delay of the three offloading policies. Note that
the task delay is the sum of the computing and transmission
delay. As noted, MFN-based offloading achieves the lowest
average transmission delay of 149.06 ms, which is just around
half of that achieved by cloud-based offloading (330.24 ms).
On the other hand, cloud-based offloading has the shortest
average computing delay of 184.30 ms, while the MFN-based
offloading has the longest average computing delay, which
is 247.67 ms. Furthermore, for the SFN-based offloading, its
computing delay is short than that of MFN-based offloading,
but higher than that of cloud-based offloading. Meanwhile, its
transmission delay is shorter than that of cloud-based offload-
ing, but higher than that of MFN-based offloading. Although
it seems that SFN-based offloading strikes a balance in terms
of computing and transmission, as noted from Table IV, actu-
ally, MFN-based offloading achieves the shortest task delay
in this case, which implies that reducing the transmission
delay dominates the system performance in this particular
application.

From the above case study, we have two observations. First,
simply prefer to offload tasks to MFNs and SFNs may not
help to reduce the task delay, since computation overhead may
dominate the overall performance. Therefore, it is expected to
strike a balance among the cloud, the MFN and the SFN to
enhance system performance. Second, although such a proto-
type has demonstrated the significance of task offloading in the
proposed architecture, it has not yet incorporated the dynamic

TABLE V
PRIMARY NOTATIONS

task requirements on communication, computation, and stor-
age. Also, the mobility of MFNs as well as the intermittent
wireless connection issues are not considered. Therefore, it is
imperative to formulate an adaptive task offloading problem in
such an architecture by jointly considering the above-discussed
factors.

V. TASKS OFFLOADING MODEL

A. Definitions

The primary notations are summarized in Table V. Denote
M = {v1, v2, . . . , v|M|}, S = {r1, r2, . . . , r|S|}, and {c} as the
set of MFNs, SFNs, and cloud node, respectively. Each MFN
generates time-critical tasks. The set of tasks of vj ∈ M is
denoted by Wj = {wj1, wj2, . . . , wj|Wj|}. Each task is atomic
and associated with a four-tuple <θji, cji, dji, γji>, where θji
means the size of data for task processing (e.g., execution code
and input data), cji means the required computation resource,
dji represents the output data size after being processed, and
γji represents the deadline. In addition, ϕju(t) means the dwell
time of the vehicle (vj) in the radio coverage of the SFN
(ru), which is computed by ϕju(t) = (Disju(t)/Velj(t)), where
Disju(t) is the current distance to the exit of the service region
and Velj(t) is the current velocity of vj [17].

Also, we assume that each node n ∈ {M ∪ S ∪ {c}} is
characterized by a four-tuple (Bn, ρn, Cn, fn), where Bn means
the total wireless bandwidth and ρn denotes the number of
channels, while fn represents the computation capability and
Cn represents the storage capability. Furthermore, we give
a binary variable xj,i,n indicating whether the task wji is
offloaded from the vehicle vj to the node n.

Then, we model the task processing procedures by defining
and analyzing the delay composition. Specifically, transmis-
sion delay consists of the data transmission time and the
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result transmission time. The data transmission time is the
duration transmitting all data to an offloading node. On the
other hand, the result transmission time refers to the time con-
sumption of sending results from the offloading node to the
corresponding vehicles. The waiting delay is the time dura-
tion of task pended at the offloading node until it begins to
be processed. The computing delay is the time for processing
the task at the offloading node. Finally, the task delay is the
duration from task generation to result received. We denote
tdelay∗
j,i,n as different delays of offloading task wji to offloading

node n, where delay∗ ∈ {trans, data, result, comp, wait, task}
and n ∈ {S∪M∪{c}}. With the above notations, the task delay
for offloading wji to the offloading node n is computed by

ttask
j,i,n = tdata

j,i,n + twait
j,i,n + tcomp

j,i,n + tresult
j,i,n . (1)

B. Analytic Model

With respect to computing delay and waiting delay, first,
we consider the case that the task is offloaded locally. That is,
given an MFN vj, considering that tasks are processed one by
one in vj, the computing delay and the waiting delay can be
formulated as

tcomp
j,i,vj
= cji

fvj

(2)

twait
j,i,vj
=

∑i−1
k=1 xj,k,vj · cjk

fvj

. (3)

Consider the task is offloaded to an SFN ru, the computing
delay and the waiting delay are formulated as

tcomp
j,i,ru
= cji

fru

(4)

twait
j,i,ru
=

∑|M|
p=1

∑|Wj|
q=1 x

beforeji
p,q,ru · cpq

fru

(5)

where x
beforeji
p,q,ru represents the tasks processed before wji in the

pending list.
Considering that all tasks in the cloud node can be pro-

cessed in parallel, and thus, we have twait
j,i,c = 0 when task wji

is offloaded to the cloud node. Then, the computing delay is
formulated as

tcomp
j,i,c =

cji

fc
. (6)

Meanwhile, the transmission delay is another key factor in
task offloading. Specifically, when the task wji is scheduled to
be processed locally, the data transmission time tdata

j,i,vj
= 0.

When offloading tasks to an SFN ru, we consider that the
total spectral bandwidth Bru is divided into ρru channels, and
each task transmission only occupies a single channel. Thus,
the maximum of the tasks, which can be offloaded to ru at the
same time, is ρru , and the data transmission rate is denoted
by Rru = Bru/ρru . Accordingly, the data transmission time is
formulated as

tdata
j,i,ru
= θji

Rru

s.t. tdata
j,i,ru
≤ ϕju(t) (7)

where the constraint means the consideration of vehicle mobil-
ity, which stands that tdata

j,i,ru
should be less than vj’s dwell time

ϕju(t). Otherwise the transmission cannot be completed.
When considering offloading tasks to the cloud node, data

are transmitted from vj to the base-station through the cellular
network, and then transmitted to the cloud node via the core
network. Thus, the data transmission time is represented by

tdata
j,i,c =

θji

Rc
+ θji

τ
(8)

where τ and Rc represent the transmitting rate in the core
network and the cellular network, respectively. Specifically,
Rc = Bc/ρc, where Bc is the total spectral bandwidth of the
cellular network and ρc is the number of channels.

For the result transmission time tresult
j,i,n , there are four cases

given as follows.
1) The task wji is processed in the cloud, and results will be

sent back via the core network and the cellular network.
Thus, the result transmission time is formulated as

tresult
j,i,c =

dji

Rc
+ dji

τ
. (9)

2) The task is processed in an SFN ru, and the vehicle is
still within its coverage when the task is completed, so
that ru can transmit the results directly to the vehicle.
Then, the result transmission time is formulated as

tresult
j,i,ru
= dji

Rru

. (10)

3) The task is processed in an SFN ru, but the vehicle have
left its coverage when task is completed. Consequently,
the results has to be sent to cloud node by ru via the
core network, and then it is transmitted to the vehicle
from the cloud node. Thus, the result transmission time
is formulated as

tresult
j,i,ru
= dji

τ
+ dji

Rc
+ dji

τ
. (11)

4) The task is processed locally, the results transmission
time is formulated as tresult

j,i,vj
= 0.

C. Problem Formulation

Given the MFN set M, the SFN set S, and the task set
Wj (1 ≤ j ≤ |M|) with attributes <θji, cji, dji, γji>, vehicles’
dwell times ϕju(t) (1 ≤ j ≤ |M|, 1 ≤ u ≤ |S|) and the attributes
(Bn, ρn, Cn, fn) of node n ∈ {S∪M∪{c}}, we define the service
time for task wji as ttask

j,i , which is computed by

ttask
j,i = xj,i,vj · ttask

j,i,vj
+
|S|∑

u=1

xj,i,ru · ttask
j,i,ru
+ xj,i,c · ttask

j,i,c

s.t.

1 ≤ j ≤ |M|, 1 ≤ i ≤ |Wj|
C1 : xj,i,vj , xj,i,ru , xj,i,c ∈ {0, 1}

C2 : xj,i,vj +
|S|∑

u=1

xj,i,ru + xj,i,c ≤ 1
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C3 :
|M|∑

j=1

|Wj|∑

i=1

xj,i,vj · θji ≤ Cvj

C4 :
|M|∑

j=1

|Wj|∑

i=1

xj,i,ru · θji ≤ Cru

C5 : xj,i,ru · tdata
j,i,ru
≤ ϕju(t)

C6 :
|M|∑

j=1

|Wj|∑

i=1

xj,i,ru ≤ ρru

C7 :
|M|∑

j=1

|Wj|∑

i=1

xj,i,c ≤ ρc. (12)

Constraints (C1) and (C2) imply that each task can be
offloaded to at most one node; constraints (C3) and (C4) rep-
resent the storage constraints of the MFNs and the SFNs,
respectively; constraint (C5) represents that the data have to
be uploaded to an SFN before the vehicle leaves its coverage;
constraints (C6) and (C7) represent that the number of tasks
transmitted at the same time cannot exceed the bandwidth
capacities of the SFN and the cloud, respectively.

Given the deadline γji of wji, it can be completed only
when ttask

j,i ≤ γji. Therefore, the TCR is defined as the ratio
of completed tasks to the total number of tasks, which is
computed by

TCR =
∑|M|

j=1

∑|Tj|
i=1

∑
n∈{S∪M∪{c}} xj,i,n

∑|M|
j=1 |Wj|

s.t.

C8 : ttask
j,i ≤ γji. (13)

With the above knowledge, the overall objective is to
maximize TCR by adaptively offloading task to appropriate
service nodes, which is formulated as follows:

MAX∀xj,i,n
TCR

s.t. C1−C8. (14)

VI. ADAPTIVE TASK OFFLOADING ALGORITHM

In this section, we propose an ATOA. The framework of
ATOA is shown in Fig. 3. First, a delay-driven classifica-
tion policy is designed to categorize all the pending tasks
into two lists, namely, computing delay (tcomp) dominated
category and transmission delay (ttrans) dominated category
(Section VI-A). Subsequently, we design a resource-driven
division policy to construct the four types of pending lists (i.e.,
cloud-only list, SFN-cloud-mixed list, SFN-MFN-mixed list,
and MFN-preferred list) for searching valid candidate offload-
ing nodes of each task (Section VI-B). Finally, we design a
deadline-driven offloading policy for offloading tasks in each
pending list (Section VI-C).

A. Tasks Categorization

Considering the fact that the performance of cloud-based
offloading and MFN-based offloading is dominated by the

Fig. 3. Algorithm framework.

transmission delay and computing delay, respectively, we clas-
sify tasks into two categories, namely, the computing delay
(tcomp) dominated category (i.e., Dcomp) and the transmission
delay (ttrans) dominated category (i.e., Dtrans). Specifically, the
tasks in Dcomp have intensive computing requirements while
the tasks in Dtrans will transmit volumes of data.

Furthermore, we propose a delay-driven classification policy
to classify tasks. Clearly, given a task wji, the task delay of
offloading via cloud (ttask

j,i,c), and computing delay of offloading
it to MFN (tcomp

j,i,vj
) are mainly decided by its input data θji and

computing requirement cji. Thus, ignoring the waiting delay in
MFN-based offloading, the task delays of two offloading can
be compared when wji is submitted, and it is inclined to be
offloaded via MFN when tcomp

j,i,vj
≤ ttask

j,i,c. Given the computing
abilities of the cloud node (fc) and vj (fvj), the transmission
rates of the core network (τ ) and the cellular network (Rc), it
is formulated as

cji

fvj

≤ θji

Rc
+ θji

τ
+ cji

fc
+ dji

Rc
+ dji

τ
. (15)

In addition, considering that the input data size of wji should
not over the available storage resources of MFN, the catego-
rization constraint is formulated as

cji ·
τRc

(
fc − fvj

)

(τ + Rc)fvj fc
− dji ≤ θji ≤ Cvj . (16)

According to (16), all tasks can adaptively classified into
two categories, i.e., Dcomp and Dtrans. Specifically, first, ini-
tialize Dcomp and Dtrans as an empty set, respectively. Then,
traverse the submitted tasks. If the task wji meet the categoriza-
tion constraint, insert it to the set of Dtrans (i.e., Dtrans ← {wji}).
Otherwise, insert wji to the set of Dcomp (i.e., Dcomp ← {wji}).
Without loss of generality, offloading via cloud is better for
tasks in Dcomp and MFN-based offloading is more suitable for
tasks in Dtrans.

B. List Construction

Based on the above category classification, to facilitate
offloading scheduling, we further define the four types of
pending lists as follows.

1) Cloud-Only List (lCO): Tasks in this list can only be
offloaded to the cloud.

2) SFN-Cloud-Mixed List (lSC): Tasks in this list can be
either offloaded to the cloud or the SFN.

3) SFN-MFN-Mixed List (lSM): Tasks in this list can be
either offloaded to SFN or MFN.

4) MFN-Preferred List (lMP): Tasks in this list can be
offloaded to either the MFN or the cloud, and they are
preferred to be offloaded to MFN when the waiting delay
in MFN is low.
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Furthermore, based on both required resources of tasks
and available resources of heterogeneous nodes, we design
a resource-driven division policy to construct the four lists.
Specifically, note that the SFN ru becomes the potential
offloading node for vehicle vj when vj lies in its radio coverage,
we formulate the resource-driven constraint as

Rru ·min
{
ϕju(t), γji

} ≤ θji ≤ Cru . (17)

Equation (17) implies the data transmission time should be
less than both vehicle’s dwell time and task’s deadline, and
the data size also should not over the storage limitation of the
SFN. Otherwise task cannot be completed. The steps of the
division policy are illustrated as follows. First, initialize four
lists as empty sets. Then, traverse the computing delay domi-
nated category (Dcomp), if the task wji satisfies the constraint,
allocate it to lSC (i.e., lSC ← {wji}), since it can be prioritized
to be processed via corresponding SFN. Otherwise allocate wji
to lCO (i.e., lCO ← {wji}). Furthermore, traverse the transmis-
sion delay dominated category (Dtrans), allocate task wji to lSM
(i.e., lSM ← {wji}) when it satisfies the constraint, otherwise
allocate it to lMP (i.e., lMP ← {wji}).

C. Task Offloading

With the above constructed four lists, in this part, we design
a deadline-driven offloading policy to offload tasks in each list.
Detailed procedures are elaborated as follows.

1) Step 1: Rearrange tasks in lCO with the ascending order
of deadline, traverse the list, and compute the task delay
in cloud-based offloading for each task. For task wji, if
the task delay of cloud-based offloading is less than its
deadline (i.e., ttask

j,i,c ≤ γji) and the number of the tasks
already offloaded via cloud does not over the limitation
(i.e.,

∑|M|
p=1

∑|Wp|
q=1 xp,q,c < ρc), then, offload it to the

cloud node (i.e., xj,i,c = 1). Otherwise, it is uncompleted
(i.e.,

∑
n∈{S∪M∪{c}} xj,i,n = 0).

2) Step 2: Traverse the list lMP with the ascending order
of deadline and compute the computing delay in MFN-
based offloading for each task. For each task wji, if
the computing delay of MFN-based offloading over its
deadline (i.e., tcomp

j,i,vj
> γji), then it is uncompleted.

Otherwise, if the task delay of MFN-based offloading
is less than its deadline and the total data of the tasks
already offloaded to MFN does not over the storage limi-
tation (i.e., ttask

j,i,vj
≤ γji and

∑|Wj|
i=1 xj,i,vj · θji < Cvj), then

offload it to the MFN vj (i.e., xj,i,vj = 1). Otherwise,
offload wji according to step 1.

3) Step 3: Clearly, tasks in both lSC and lSM may offloading
to the same SFN, and thus we jointly offload them based
on a merge sorting method. First, we pick up the task
with the lowest deadline in both lists. Subsequently, for
this task wji, if the task delay of SFN-based offloading
is less than its deadline, the number of tasks already
offloaded in the SFN ru is less than ρru and all data of
them does over the storage limitation (i.e., ttask

j,i,ru
≤ γji,

∑|M|
j=1

∑|Wj|
i=1 xj,i,ru < ρru and

∑|M|
j=1

∑|Wj|
i=1 xj,i,ru · θj,i ≤

Cru ), then offload it to the SFN ru (i.e., xj,i,ru = 1).

Otherwise, offload wji according to step 1 when wji ∈
lSC, or offload it according to step 2 when wji ∈ lSM.

VII. NUMERICAL SIMULATIONS AND ANALYSIS

A. Setup

The simulation model is built based on the system architec-
ture proposed in Section III. In the default setting, we extract a
1.5 km ×1.5 km area from the Qingyang District of Chengdu,
China, and 180 taxi trajectories are extracted on August 20,
2014. In each time slot, the number of vehicles that submit
tasks ranges from 2 to 5. One cloud server and six SFNs are
simulated in the concerned scenario, where the cloud node
has full coverage of the service area and the fog nodes are
randomly deployed. The radio coverages of the SFNs are uni-
formly generated in the range of [300, 400]. The cloud consists
of ten channels with the bandwidth Rc = 7, and the transmis-
sion rate via the wired network is set to τ = 5. Each SFN
consists of five channels with the bandwidth Rru = 10. The
computation capacity of the cloud node is set as fc = 30.
The storage capacity of SFNs is uniformly generated between
[200, 300] and their computation capacity is uniformly gener-
ated in the range of [12, 16]. In addition, we set the storage
capacity of MFNs in the range of [10, 15] and set their
computation capacity in the range of [2, 4].

By default, each vehicle generates [2, 3] tasks in each time
slot. For each task, the data size is randomly distributed in
the range of [4, 8], the deadline is set to CurrentTime+[5, 15]
and the required computing resources are set in the range of
[6, 14]. Furthermore, the result transmission time from SFNs
is set to 0.5 while it is set to 1 if the result was delivered to
the vehicle from the cloud node.

To compare performance, we implement three solutions
described as follows.

1) Cloud First and MFN Last (CF&ML): Given a set
of tasks, the offloading priority in descending order is
cloud, SFNs, and MFNs.

2) MFN First and Cloud Last (MF&CL): Given a set
of tasks, the offloading priority in descending order is
MFNs, SFNs, and cloud.

3) Heuristic Greedy Algorithm (Heuristic) [10]: It sched-
ules the task offloading based on a metric called delay-
weight-ratio, which measures both the gained service
delay and the effectiveness of available resources in a
particular node. Accordingly, a smaller value of this met-
ric implies better profits on resource utilization. Then,
the algorithm selects the node with the smallest delay-
weight-ratio value for task offloading in each scheduling
period.

B. Effect of the Number of Task Generation Vehicles

Fig. 4 shows the TCR of different algorithms under differ-
ent numbers of task generation vehicles. As noted, with an
increasing number of task generation vehicles, the TCR of all
the algorithms decreases. Nevertheless, excepting ATOA, the
TCR of other algorithms drops significantly with an increas-
ing system workload, which demonstrates the scalability of

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 06,2021 at 02:38:31 UTC from IEEE Xplore.  Restrictions apply. 



8008 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

Fig. 4. TCR under different number of task generation vehicles.

Fig. 5. Offloading composition under different number of task generation
vehicles.

Fig. 6. Average task delay under different number of task generation vehicles.

ATOA. Fig. 5 illustrates the offloading composition of differ-
ent algorithms. As shown, when the number of task generation
vehicle is small, the preference of cloud or MFN offloading
would not affect the TCR very much. This is mainly because
the system workload is quite low, so that most tasks can
be completed in time. However, with an increasing number
of vehicles, ATOA shows its advantages on maximizing the
TRC by adaptively adjusting the service proportion to different
nodes. Fig. 6 shows the average task delay of different algo-
rithms. As noted, although the Heuristic achieves the shortest
average task delay in a very low workload environment, its
performance drops significantly with an increasing number
of task generation vehicles. In contrast, ATOA manages to
achieve much better performance than all the other algorithms
in a high system workload environment.

C. Effect of the Number of Generated Tasks Per Vehicle

Fig. 7 shows the TCR of different algorithms under differ-
ent numbers of generated tasks per vehicle, we observe that

Fig. 7. TCR under different number of generated tasks per vehicle.

Fig. 8. Offloading composition under different number of generated tasks
per vehicle.

Fig. 9. Average task delay under different number of generated tasks per
vehicle.

compared with Fig. 4, although both the figures show the TCR
of algorithms under different task numbers, the performance
of all the algorithms drops more dramatically in such a case.
This is mainly because unlike varying the number of task
generation vehicles, where the MFN nodes increase accord-
ingly, this experiment only increases the task number while
remaining the same number of MFNs. Fig. 8 gives offloading
composition of different algorithms. As noted, except ATOA,
the other three solutions cannot effectively exploit the three
types of offloading nodes and their TCR drops quickly. Fig. 9
shows the average task delay of different algorithms. Similar
to the observations from Fig. 6, although Heuristic achieves
the best performance in a very low workload environment,
its average task delay increases dramatically with an increas-
ing number of tasks, which demonstrate that excepting ATOA,
other algorithms can not adaptively adjust the task offloading
with varying number of tasks.
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TABLE VI
TRAFFIC CHARACTERISTICS OF DIFFERENT SCENARIOS

Fig. 10. TCR under different required computing resources.

Fig. 11. Offloading composition under different required computing
resources.

Fig. 12. Average task delay under different required computing resources.

D. Effect of Required Computing Resources

Fig. 10 shows the TCR of different algorithms under dif-
ferent required computing resources. As expected, the TCR
of all the algorithms decreases with an increase in required
computing resources. Nevertheless, ATOA always manages
to maintain a decent performance, especially for serving
computation-intensive tasks. Fig. 11 shows offloading com-
position of different algorithms. As noted, ATOA shows its
effectiveness in the adaptive adjustment of task offloading
under different task computation requirements. Fig. 12 shows
the average task delay of different algorithms. Note that the

Fig. 13. TCR under different scenarios.

increasing computation requirements will not only result in a
longer computing delay but it may also lead to a longer wait-
ing delay. Therefore, it is even important to strike a balance
on offloading tasks to SFNs and the cloud to avoid exces-
sively long waiting delay at SFNs as well as the overwhelming
data transmission overhead at the cloud. Clearly, as observed,
ATOA achieves the best performance in this regard, since it
cannot only serve more tasks than other algorithms but also
achieves the lowest average task delay.

E. Effect of Different Traffic Scenarios

To give a comprehensive performance evaluation, in addi-
tion to the default traffic scenario, we selected two more
scenarios with different traffic workloads and patterns, which
are described as follows: 1) Scenario 2: a 3 km × 3 km area of
Qingyang District, Chengdu, China, on August 20, 2014 and
2) Scenario 3: a 3 km × 3 km area of Haidian District, Beijing,
China, on November 13, 2015. Detailed statistics, including
the total number of observed vehicle traces, the average dwell
time (ADT) of vehicles, the variance of dwell time (VDT),
and the average number of vehicles (ANVs) in each second
are summarized in Table VI. As noted, Scenarios 1 and 2 are
the same area with different sizes, and Scenario 3 represents
a totally different traffic pattern in a different city.

Fig. 13 shows the TCR of different algorithms under differ-
ent scenarios. As analyzed above, the selected three scenarios
can represent different traffic scales and different traffic pat-
terns. Therefore, we may safely conclude that ATOA is able
to achieve satisfactory performance in a variety of traffic sce-
narios. Fig. 14 shows the offloading composition of different
algorithms. As shown, ATOA always achieves the highest TCR
by adaptively allocating tasks to different types of nodes under
different traffic scenarios. Fig. 15 shows the average task delay
of different algorithms. First, compared with Fig. 13, we note
that although the Heuristic achieves slightly lower TRC than
MF&CL, it outperforms MF&CL in terms of reducing the
average task delay. This makes sense since Heuristic serves
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Fig. 14. Offloading composition under different scenarios.

Fig. 15. Average task delay under different scenarios.

fewer tasks than MF&CL, which makes it easier to have bet-
ter performance for those served tasks. However, we note that
ATOA not only serves most tasks as shown in Fig. 13, but
also achieves much lower average service delay compared
with other algorithms, which further demonstrates that it is
nontrivial for ATOA to achieve such performance.

VIII. CONCLUSION AND FUTURE WORK

In this article, we first presented a two-layer VFC architec-
ture, where the cloud nodes, SFNs, and MFNs are cooperated
to enable time-critical IoV applications. Subsequently, we gave
a motivational case study by implementing a prototype of the
TAD&W system. The observations motivated the necessity
of the problem to be investigated. Furthermore, we formu-
lated an adaptive task offloading problem. Specifically, we
modeled the task delay by decomposing it into transmission
delay, waiting delay, and computing delay, and analyzed task
offloading procedures by jointly considering the diverse trans-
mission, computation, and memory requirements of tasks, the
heterogeneous capabilities of different nodes and the mobil-
ity of vehicles. Then, we proposed an ATOA. Specifically,
we categorized all tasks based on the designed delay-driven
classification policy. Then, we constructed the four types of
pending lists based on a designed resource-driven division
policy. Furthermore, a deadline-driven offloading policy was
proposed to collaboratively offload tasks from different lists
to appropriate nodes. Finally, we built the simulation model
with realistic vehicular trajectories and give a comprehensive
performance evaluation. The results demonstrated the effec-
tiveness and superiority of the proposed algorithm under a
wide range of scenarios.

In our future work, the prototype system will be fur-
ther evolved from the current hardware-in-the-loop testing to
small scale realistic IoV environments. In addition, more time-
critical applications in IoV will be examined with the proposed
framework.
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