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Adaptive Online Decision Method for Initial
Congestion Window in 5G Mobile Edge Computing

Using Deep Reinforcement Learning
Ruitao Xie, Xiaohua Jia , Fellow, IEEE, and Kaishun Wu

Abstract— Mobile edge computing provides users with low
response time and avoids unnecessary data transmission. Due
to the deployment of 5G, the emerging edge systems can provide
gigabit bandwidth. However, network protocols have not evolved
together. In TCP, the initial congestion window (IW) is such a
low value that most short flows still stay in slow start phase
when finishing, and do not fully utilize available bandwidth.
Naively increasing IW may result in congestion, which causes long
latency. Moreover, since the network environment is dynamic,
we have a challenging problem—how to adaptively adjust IW
such that flow completion time is optimized, while congestion
is minimized. In this paper, we propose an adaptive online
decision method to solve the problem, which learns the best policy
using deep reinforcement learning stably and fast. In addition,
we propose an approach to further improve the performance by
supervised learning, using data collected during online learning.
We also propose to adopt SDN to address the challenges in
implementing our method in MEC systems. To evaluate our
method, we build an MEC simulator based on ns3. Our simula-
tions demonstrate that our method performs better than existing
methods. It can effectively reduce FCT with little congestion
caused.

Index Terms— Congestion control, initial congestion window,
deep reinforcement learning, mobile edge computing, software-
defined networking.

I. INTRODUCTION

MOILE edge computing (MEC) is emerged as a local-
ized cloud. It installs shared storage and computation

resources within radio access networks [1], [2], as shown
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Fig. 1. The architecture of mobile edge computing and some applications
benefiting from it.

in Fig. 1. Due to its proximity to mobile users, it can provide
users with low response time, and avoid unnecessary data
transmission. At the same time, software-defined networking
(SDN) is utilized in MEC systems to enable intelligent net-
work management and service orchestration [3], [4].

In edge computing, the system paradigm changes, but the
network protocols above it have not evolved together. This
significantly inhibits the further reduction of latency. The
majority of applications rely on TCP, a widely used transport
layer protocol. It dynamically adjusts a congestion window for
a sender according to some congestion signal, such as packet
loss. The congestion window is started from a fixed initial
value. It is around two in the early version of TCP, and is
increased to ten in 2010 [5], [6]. However, recent research
works suggest that most short flows (such as web search) still
stay in slow start phase when finishing and do not fully utilize
available bandwidth [7], [8]. 5G MEC will make this situation
more severe for two reasons: 1) a great proportion of flows are
short. This can be estimated from the existing research works
on LTE mobile traffic, such as [9]. 2) incoming 5G cellular
systems can provide gigabit bandwidth, which is greatly higher
than present networks [10]. This encourages us to increase
initial congestion window (IW) in 5G MEC system.

The higher the IW is, the less round trip time it takes to
reach the saturate bandwidth. In other words, high IW may
lead to low latency. However, naively increasing IW may result

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 09,2020 at 10:42:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8702-8302


390 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

in congestion, which causes long latency. Most applications
targeted by edge computing demand real-time latency, thus
congestion may have disastrous impact. Thus, a significant
problem arises, that is how to increase initial congestion
window such that flow completion time is optimized, while
congestion is minimized.

This problem has two challenges. The first is how to build
an accurate and general model which describes the influence of
IW over the optimization objectives. Such modeling is hard to
be accurate and general at the same time, as it requires manual
analysis of all the intricacies of a complex communication
system. The second challenge is how to formulate congestion.
In existing works [7], congestion is always measured by RTT.
High RTT implies congestion happening, while low RTT
implies the opposite. The objective is to minimize a weighted
sum of throughput and negative RTT. However, it is not
easy to choose a suitable weight to balance those conflicting
objectives.

To overcome the first challenge, we propose to formulate
the problem as a Markov decision process (MDP) and use
reinforcement learning to solve it. This approach learns
a decision policy from experiences, by promoting good
decisions and penalizing bad ones. For the second challenge,
we consider that flow completion time (FCT) nicely indicates
congestion, as suggested in [11], because once a flow suffers
congestion, its FCT would increase drastically due to long
retransmission delay.

We use neural network to represent the policy function,
as existing works [12]–[15] show that it can learn features
automatically and generalize well. The policy takes system
state as the input and IW as the output. We select a set of
factors to represent the system state. Finally, we solve the
problem and obtain the best policy network using A3C, one
of classic actor-critic algorithms.

When using reinforcement learning, we still encounter
several challenges. The first is how to make the algorithm
converge stably and fast. The second issue arises under a
dynamic network environment. That is, a converged policy
model under an old environment may perform poorly under
a new environment. The third issue is how to implement our
method in MEC systems. We address the above issues and
make the following contributions:

• We propose a bracket of techniques to ensure the con-
vergence of our algorithm: the usage of batch normaliza-
tion to provide an effective exploration, reusing an IW
decision to mitigate forward dependency and stabilize the
training, and a mechanism of early feedback to updating
policy timely.

• We propose an adaptive method to adjust the policy
model according to the dynamic network environment.

• In order to obtain one generalized policy model, we pro-
pose an method that elegantly combines reinforcement
learning and supervised learning.

• We propose a SDN-based implementation, which not
only works in a single MEC system, but also enables
collaborative learning among multiple MEC systems.

To evaluate our method, we build an MEC simulator based
on ns3 and a module of 5G mmWave cellular network.

We compare our method with SmartIW, an existing IW setting
algorithm designed for search engines [7], [8], and a normal
static IW setting. Our extensive simulations demonstrate that
our method performs better than the others. It can effectively
reduce average FCT with little congestion caused. Moreover,
it is adaptive to dynamic traffic.

The rest of this paper is organized as follows. Section II
presents an overview of the decision problem of intelligent
IW in MEC and its MDP formulation. Section III gives
an overview of our method and the techniques to ensure
convergence. Section IV presents how to design policy func-
tion. Section V and Section VI present the online learning
algorithm and the adaptive learning algorithm respectively.
In Section VII, we discuss the details related to implementa-
tion and several issues on supervised learning. In Section VIII,
we introduce simulation setup. The simulations and perfor-
mance evaluations are presented in Section IX. Section X
introduces the related works. Section XI concludes the paper.

II. PROBLEM OVERVIEW AND FORMULATION

Mobile edge computing aims to improve the performance of
latency-sensitive applications and computation-intensive appli-
cations, by providing storage and computation resources at the
edge of the network. We illustrate the architecture of MEC
with Figure 1. An edge server (or a cluster of edge servers) is
deployed within a Radio Access Network (RAN) [1]. A variety
of mobile applications may request data from or offload
computation to the edge sever rather than remote cloud servers,
such as searching for smart phones, requesting real-time traffic
information for vehicles, recognizing objects for unmanned
aerial vehicles, and analyzing sensor data for IOT devices and
so on.

Most applications use the TCP protocol to implement
communications. That is, a client first establishes a TCP
connection with the edge server, and then it sends a request
to the server, and next the server sends a response back.
Once a connection is established, each sender sends data at
a dynamic rate managed by a congestion control algorithm.
It initially sets the congestion window as a small value, usually
2 segments or 10 segments, and then increases or decreases
the window according to some network feedback.

Increasing IW can reduce FCT and improve throughput.
However, pushing IW to its maximum may result in more
congestion events and longer FCT due to retransmission delay.
There exists the best IW such that FCT is minimized without
extra congestion caused. The best IW depends on system
situation. If the system load is low, then there are small
number of concurrent flows, an increased IW for each flow will
reduce FCT without causing congestion, because the aggregate
transmission rate is far less than network bandwidth. On the
other hand, if the system load is high, then the same increased
IW will result in severe congestion and long FCT, because
at this time the aggregate transmission rate exceeds network
bandwidth. Since system situation is dynamic, an adaptive
decision is required. Thus, our problem is to select IW for
each flow according to dynamic system situation, such that
FCT is minimized, while no extra congestion is caused.
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Note that in wireless network, the channel condition for
different clients is very volatile, it varies with client position,
physical occlusion, signal reflection, etc. While these are
important factors, we leave these micro control issues to
congestion control algorithm which caters more to situations
of individual clients. We focus on setting IW according to the
system traffic, which is a macro control and has a widespread
effect over the system. Besides, there are many other factors
impacting on TCP sending rate, such as flow control, window
increment and decrement mechanisms in congestion control
algorithm. The works on these factors to improve transmission
performance are orthogonal to our work.

For MEC applications, there are uplink flows (a client to the
edge server) and downlink flows (in reverse direction). It is
easy to adjust IW for downlink flows, since only the edge
server is involved and central control is possible. In contrast,
it is hard to adjust IW for uplink flows due to distributed
clients.

The intelligent IW decision problem is hard to solve in a
traditional way, because it needs to model the influence of
IW on FCT and congestion. Such modeling is hard to be
accurate and general at the same time, as it requires manual
analysis of all the intricacies of a complex communication
system. Instead, we use reinforcement learning (RL) to solve
the problem, which adapts to a new network situation through
learning without requiring an explicit model of the situation in
question. We formulate the problem as an MDP in following.

In MEC, the edge server receives a sequence of requests,
and returns a response for each request. Our task is to deter-
mine an IW for the transmission of each response according
to network state. Our goal is to simultaneously minimize the
average FCT of all responses and congestion.

Let ft denote the response flow starting at tth timestep.
We determine the initial congestion window for each response,
denoted by at, according to the system state at that time,
denoted by st. The decision process forms a trajectory
{s0, a0, s1, a1, s2, a2, . . .}. When flow ft finishes transmis-
sion, we obtain its FCT, denoted by dt. IW decisions are made
according to a policy. Let θ denote the parameters of the policy,
and then our problem is formulated as selecting the best θ to
minimize the expected accumulated FCT for each state st:

min
θ

E

[ ∞∑
k=0

γkdt+k

]
, (1)

where γ is a discount factor in (0, 1]. If γ is zero, then
the equation becomes minθ E[dt], which is to minimize the
expected FCT of any flow. If γ is nonzero, then for t = 0 the
term in bracket becomes d0 + γd1 + γ2 d2 + . . . It means the
IW of flow f0 not only affects its own FCT, but also affects
FCT of subsequent flows with diminishing effect. Although
only FCT appears in the above objective function, congestion
also affects this objective. Since once a congestion happens,
the FCT of suffered flows must increase a lot.

III. OVERVIEW OF METHOD

In this section, we first give an overview of our method,
and then discuss two techniques helping convergence.

Fig. 2. The method consists of an adaptive online learning algorithm and a
supervised learning.

A. Method

As shown in Fig. 2, our method consists of two sequential
parts. The first part is an adaptive online learning algorithm
to learn the best policy, which is the core of our method.
It is based on the classic asynchronous advantage actor-critic
(A3C) algorithm. As illustrated by the top part in Fig. 2,
the neural policy model receives a histogram input computed
from raw states and outputs an IW decision. Then in the
network, a flow sets its initial congestion window as the IW
given by the policy model and transmits data. This generates
a flow completion time (FCT) as a reward signal and a new
network state st+1. RL algorithm uses the FCT to update the
parameters of the policy model. We will introduce the online
learning algorithm in Section V and then further improve it
by introducing the adaptive algorithm in Section VI.

As the online learning goes, our algorithm finds the best
decisions under different network environments. During this
process, we collect the histogram input and the action output
to form a dataset. After some data processing, the dataset
is used to train a new neural model to predict action output
(IW) using supervised learning, as illustrated by the bottom
part in Fig. 2. It becomes a classification problem and can
be easily solved with a gradient descent algorithm. Finally,
we obtain a static neural network that can output the best IW
decision under various network environments. As such, we can
avoid adaptive learning. Instead, our agent can make the best
decision using the well-trained model. Note that here we can
re-design a classification model instead of using the same
model as in adaptive learning. Moreover, we can adopt several
kinds of methods to improve the efficiency of making decision
via neural policy, such as compressing model, running on
CNN-friendly hardware etc. [16]. Several issues on supervised
learning will be discussed in Section VII-C.

B. Mitigating Forward Dependency

Recall that to update the parameters of the model, we need
training samples each of which consists of three elements:
the system state st, the action at (which is IW) and the flow
completion time dt.

Ideally, dt only depends on st and at, and the training
algorithm will adjust the network parameters to penalize
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or encourage at based on whether dt is large or small.
However, dt does not only depend on st and at, it also
possibly depends on future actions at+1, at+2, etc. This is
because the flow sent at time t does not complete immediately,
it might be completed several time steps later, when action
at+1 . . . at+k have been taken. Those future actions might
cause congestion in the network and affect the flow sent at
time t, influencing dt, thus tricking the training algorithm
to incorrectly penalize or encourage at. During experiment,
we found that it creates instability and hinders training.

To mitigate this forward dependency issue, we let an action
persist for a period of time, so that its effect over FCT can
be stably observed. Specifically, we reuse an IW decision
for multiple flows, and update the IW decision periodically.
This strategy is based on the assumption that flows in a short
interval have similar system states.

C. Updating Policy Timely

The FCT’s are not only delayed, but their delays are
different. Such difference will bias the training, which impedes
the model performance. Based on the analysis in the above
section, after an action at is taken, one has to wait for its
corresponding FCT dt, and the time of waiting is exactly dt.
If dt is large, such an adverse sample (which discourages
at) will only arrive after many supportive samples (which
encourage at) have been seen. As the training algorithm does
not make use of adverse samples timely, it tends to be over-
optimistic and thus slow down the convergence of training.

In order to address this issue, we propose a mechanism
of early feedback, that is we estimate FCT for some flow
before it finishes transmission. More specifically, when a flow
sender starts transmission, it also starts a timer. Once the timer
expires, but the transmission has not finished yet, then we
estimate its FCT. Although there are many ways of estimation,
we use a constant value for simplicity. If the value is large,
then we penalize congestion much; while if the value is small,
then we penalize congestion little.

Here, we have two hyperparameters in our algorithm: the
timer and the estimation of early feedback. In our simulation,
we set the timer to 100 ms (half of min RTO) and the
estimation of FCT to 300 ms.

IV. POLICY FUNCTION

We use neural network to represent the policy function, with
system state st as the input and IW at as the output. Here,
three important issues arise: 1) which factors are involved
in the system state, and how to represent them; 2) how to
formulate the IW output; 3) which architecture should be used
for the neural network. We discuss each of them in below.

A. System State

We have two heuristic principles for selecting factors to
represent the system state: 1) each factor is obtainable from
the edge server alone; 2) each factor should relate to the
congestion problem.

First, we find four factors describing our system: flow
completion time, inter-arrival time, inter-departure time, and

response size. Our system serves response flows by providing
data transmission (i.e. service). A service starts when the
edge server is about to send the first packet of a response;
it finishes when the edge server receives the last ACK for
the transmission. The service time in our problem is actually
the flow completion time. In addition, the time between
successive arrivals of responses, called inter-arrival time by
convention, is also widely used in describing network status,
and thus selected. Inspired by inter-arrival time, we think inter-
departure time, that is the time between successive departures
of responses, may be also useful. Lastly, the response size
affects FCT (i.e. service time), and thus we include the size
of the transmitted flows.

Second, we look at the factors expressing system perfor-
mance. Besides the FCT mentioned above, RTT and through-
put can also be measured by the edge server, and thus we
include them as part of the system state.

For each of the above factors, we take the latest K samples
and construct a histogram to describe their patterns over a
period of time. The set of these histograms forms the system
state st. Note that we use histogram instead of raw samples
because it is more compact and histograms of different factors
are easily comparable without normalization. Using histogram
discards temporal information in the sample sequence, that is
not a concern because these samples arrive in a short time
during which the system load does not change much, so they
can be safely treated as a snapshot of the system status.
We assume that for a relatively stable system status, there is a
corresponding optimal IW setting. As such, our model outputs
an IW based on a snapshot, without considering temporal
information between samples which reflect fluctuations in the
system status. To compute the histogram for a factor, we first
generate a sequence of bin edges. A simple way is to collect
a set of samples in advance, compute a set of percentiles
from it, and then make bin edges. Let {p1, p2 . . . pm} denote
a set of m percentiles, then we generate a set of m + 1
bins as {(0, p1), [p1, p2), . . . , [pm−1, pm), [pm, +∞)}. In our
simulation, we use ith percentile where i ∈ {0, 10, 20 . . .100}
to make 12 bins. Recall that we have six variables, thus our
histogram input forms an array of 12×6.

B. Policy Output

For the output, we can either output a value as IW or output
a set of values as the probability distribution over a discrete
set of IW. The former explores a continuous action space,
while the later explores a discrete action space. We use the
latter representation as the solution space is smaller, making
the policy network easier to train.

Next, we discuss how we select this candidate set. For
each response, IW is a positive integer bounded by the
response size, which can be represented by counting its
segments or bytes. Either way, the space of candidate IW
is large. The size of action space has a significant effect on
computational complexity. To reduce the complexity, we select
2i segments as the candidate set. The i starts from 4 and
increases to a value causing obvious congestion which can
be found by brute force searching. In our simulation, we use
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Fig. 3. The neural network used for policy function. The cubes in yellow represent kernels. “conv” represents convolutional layer, “fc” represents fully
connected layer, and “bn” represents batch normalization. The number in each pair of brackets is the size of that layer.

[10, 16, 32, 64, 128, 256, 512] as the set of candidate IW, where
10 is included as a standard setting proposed in [6].

Our design mimics the way traditional congestion control
algorithms adjust a congestion window, which increases expo-
nentially in the slow start phase. In a simple congestion control
model without considering other factors causing packet drops,
when no congestion happens, the difference of the two FCT’s
caused by two neighboring IW candidates 2i and 2i+1 is one
RTT. Thus, if the true optimal IW falls within [2i, 2i+1],
the optimal RTT and our computed RTT (with quantized IW)
differs by one at most.

C. Neural Network Architecture

A neural network receives an input at one end, transforms it
through a series of hidden layers, and produces a result at the
other end. The output of a hidden layer is called activation.
The activation of a layer is the input of the following layer.
There are several types of hidden layer: fully connected layer,
convolutional layer, and recurrent layer etc.

We design a neural network architecture as illustrated
in Fig. 3. It consists of two parts: feature extractor and
predictor. The feature extractor is responsible for extracting a
feature from an input. It is composed of four 1D convolutional
layers of 5×1 kernel, a 1D convolutional layer of 1×1 kernel,
and a fully connected layer. Each layer has the following
structure: 1) 10 kernels with a stride of one; 2) 20 kernels with
a stride of two; 3) 20 kernels with a stride of one; 4) 40 kernels
with a stride of two; 5) 10 kernels with a stride of one. Then,
the output is flattened into a vector of 180 neurons, and is
transformed to a vector of 10 neurons by a fully connected
layer. The output here is the feature extracted from our input.

The second part of the neural network is a predictor with
the feature as input. It is responsible for predicting action.
It consists of two fully connected layers of 128 neurons and
an output layer. The output is transformed to a probability
distribution by using a softmax function.

We choose to use convolutional neural network (CNN)
because histogram has spatial structure, which can be exploited
by the CNN. We will show its advantage over a simple fully
connected network in simulation. Moreover, CNN layers are
pretty lightweight in terms of parameter count, all the con-
volutional layers combined only contributes 30% to the total
parameter count. In addition, model compression techniques
targeted at CNN structure can improve efficiency [16].

Reinforcement learning is a trial and error approach, so try-
ing every choice without bias at the beginning of training is
very important. Otherwise, we may fail to find the optimal
choice due to lack of exploration. Thus, we use the technique
of batch normalization in the policy function. This approxi-
mately forces all input to the prediction network to have zero
mean and unit variance just after initialization, thus have a
higher chance to lead to uniform output. It is sufficient to
apply batch normalization to the second fully connected layer,
as shown in Fig. 3.

V. ONLINE LEARNING ALGORITHM

We have formulated the problem as an MDP. We use the
classic asynchronous advantage actor-critic (A3C) algorithm
[17] to compute the best policy.

Given a policy with a set of parameters θ, we can generate a
trajectory {s0, a0, s1, a1, . . . , st, at, . . .} and a corresponding
set of FCT {d0, d1, . . . , dt, . . .}. Recall that our problem is
to find the best policy parameters θ such that the expected
accumulated FCT is minimized at each timestep t, that is

minθ E

[∑∞
k=0 γkdt+k

]
. The discounted accumulated FCT

is called return by convention. Let Rt denote it, that is
Rt =

∑∞
k=0 γkdt+k.

Let πθ(a|s) denote the policy function having parameters θ.
It is the probability of taking action a under state s. We select
action according to it. Let Vω(s) denote the value function
having parameters ω. For the value function, we adopt the
similar neural network architecture as for the policy function.
The only difference is that the last layer of the value function
outputs a value instead of a probability distribution. Besides,
we let the two functions share all the parameters of the feature
extractor part. The A3C algorithm iteratively updates θ and ω
until they converge.

We adopt the parallel learning architecture in A3C for
stabilization. As shown in Fig. 4, it consists of a central
agent, several subagents, and several environment instances.
The central agent is responsible for maintaining the latest
parameters θ and ω; each subagent is responsible for making
IW decisions according to a policy function and computing
the updates for θ and ω; all environment instances are the
similar, which means they have similar system states. The
parallel learning is possible in the real environment. First,
according to a research on 3G/LTE mobile traffic [9] many
cellular towers share the same traffic pattern related to their
geographical locations. We believe this feature will be true
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Fig. 4. The architecture of parallel training.

in 5G cellular networks as well. Second, collaborative MEC
is a workable framework [2]. Each of the subagents can run on
an edge server located with a cellular tower, and the central
agent can run on any one of edge servers or a specialized
server.

In this parallel architecture, when an edge server in an
environment instance query the best IW for current situation,
it sends the state to its associated subagent. The subagent then
computes the best IW using its policy function, and returns the
result immediately. After some steps, the subagent computes
increments Δθ and Δω from the past trajectory. The subagent
then sends those updates to the central agent, who then applies
those updates on the latest parameters θ and ω. This updating
is asynchronous.

The A3C algorithm for each subagent starts from t = 0.
At each iteration a subagent runs through the following steps:

1) reset increments: Δθ ← 0 and Δω ← 0;
2) synchronize the subagent parameters (θ′ and ω′) from

the central agent: θ′ ← θ and ω′ ← ω;
3) interact with the environment using the current policy

and collect a trajectory {st, at, . . . , st+T−1, at+T−1},
and a corresponding set of FCT {dt, . . . , dt+T−1},
where T is a hyperparameter larger than n (the para-
meter for n-step return);

4) compute n-step return R̄t+i for all i ∈ [0, T − 1− n]:

R̄t+i =
n−1∑
k=0

γkdt+i+k + γnVω′(st+i+n); (2)

5) compute advantage At+i for all i ∈ [0, T − 1− n]:

At+i = R̄t+i − Vω′(st+i); (3)

6) compute the cumulative increment

Δθ ← −
T−1−n∑

i=0

∇θ′ log πθ′(at+i|st+i)At+i; (4)

7) compute the cumulative increment

Δω ←
T−1−n∑

i=0

At+i∇ω′Vω′(st+i); (5)

8) perform asynchronous updates to those global parame-
ters θ and ω: θ ← θ+η1Δθ and ω ← ω +η2Δω, where
η1 and η2 are learning rate;

9) set t← t + T ;
10) repeat the above steps until reaching maximum iteration

number.
In the above algorithm, we use n-step return to approximate

Rt. As a result, the tail part of a trajectory is dropped in each
iteration. To avoid this waste of training data, we can cache
this sub-trajectory and use it in the next iteration. The above
algorithm can be easily extended to implement this idea.

VI. ADAPTIVE LEARNING ALGORITHM

As mentioned above, our algorithm starts with a uniform
distribution over the action space using batch normalization,
it converges as the trial and error process goes. The network
environment may change afterward, and the performance
of the policy model trained in old environment will likely
degrade. To address this issue, we propose an adaptive algo-
rithm. It detects the change in system environment and restarts
learning on demand. To detect the change of environment,
we monitor the input to the neural network, which is his-
togram. If a notable difference between consecutive histograms
is observed, the environment is likely undergoing a significant
change.

First, we use the change of the neural network input
(histogram information) to detect the change of environment.
We use cosine similarity to evaluate the similarity between
two inputs, and define the difference between input s and old
input s′ as

Δs = 1− s · s′
‖s‖‖s′‖ . (6)

The greater the value is, the larger the change is. To stabilize
the algorithm, we use moving average over a window to
capture the old state s′.

The second task of our algorithm is to restart learning.
A naive way is to re-initialize all the parameters in neural
models, but this destroys too much information learned before.
Since our purpose is to make the policy model to output an
uniform distribution so that each action can be explored again,
it is sufficient to re-initialize the parameters of the last two
layers.

The adaptive algorithm runs at the central agent. At each
iteration our algorithm proceeds as follows:

1) obtain the average state s in this iteration and the moving
average state over past L iterations denoted by s′;

2) compute Δs as above;
3) Once Δs is larger than a threshold, then we re-initialize

the last two layers of the policy function and the value
function.

Retraining is not a common practice in learning based
algorithms, as it discards valuable information learned before,
so additional justification is required. Here we justify the use
of retraining. First, in our problem, training samples arrive as
learning process goes, and we have no control over their order,
so we cannot randomize them like what is typically done in
offline training. Second, the system state usually remain stable
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Fig. 5. An implementation of our method in a SDN-based MEC system.

for quite a while before significant change, as suggested in
[18] traffic changes in the scale of hour. As such, our learning
algorithm feeds lots of similar samples to the model in a long
duration and results in overfitting. When new kinds of samples
arrive later, the overfitted model locked in a local minimum
has difficulty to forget the past and learn again. Last, but most
importantly, overfitting has a severe impact on exploration
when system state changes. In our learning, we explore IW
candidates according to the probability πθ(a|s). Then, an over-
fitted model, which has tiny or even zero entropy, always
chooses the outdated best IW, which leads to poor performance
in new state, and seldom chooses the other IW candidates. Due
to low exploration, the adaptation to new system state is either
very slow or impossible, basically depending on how small the
entropy is. Overall, we need to manually introduce entropy
into the model when necessary, and we found that retraining
the last few layers of the model strikes a good balance among
simplicity, robustness and effectiveness.

VII. IMPLEMENTATION AND DISCUSSION

In this section, we discuss how to implement our method
in SDN-based mobile networks and in a realtime manner.
In addition, we discuss some issues on supervised learning.

A. SDN-Based Implementation

We have challenges in implementing the method in MEC
systems. The first is how to obtain system state as a global
view of whole MEC system. For a MEC system having a
single edge server, the system state observed by that server
is the global view. However, in the practical scenario with
multiple servers, the load is distributed among them, and then
the system state observed by each server only represents a
local view. Those local views may not agree with each other
about the system load due to load imbalance. The second
challenge is how to enable neighboring MEC systems to
collaborate in parallel learning.

We propose to adopt SDN to address the above challenges
and make the implementation easier. SDN separates the control
from data plane and enables intelligent network management
and service orchestration. Researchers have proposed to utilize
SDN to solve the complexities in MEC systems [3], [4].
In SDN-based MEC systems, we can easily implement our
method. As shown in Fig. 5, edge servers are connected to a
SDN switch, and the switch are connected to a SDN controller.

The switch is responsible for collecting system states and
rewards, and the controller is responsible for learning the
neural policy by the adaptive online algorithm. The switch
collects data and periodically sends it to the controller; the
controller computes the best IW according to the collected
state and pushes it back; the switch then publishes the latest IW
to all edge servers connected; each edge server then transmits
flows using the new IW. The controller also periodically
updates the neural policy using the collected data.

SDN can also enable collaborative learning among mul-
tiple MEC systems. Several types of SDN multicontroller
architectures have been proposed, as introduced in a recent
survey [19]. To implement parallel learning, we can adopt a
hierarchical design with two layers. The lower layer contains
local controllers, each of which controls a MEC system, while
the upper layer contains the root controller, which manages all
the lower layer. We let each local controller run a subagent
and the root controller run the central agent. As discussed
in the parallel learning, each subagent at each local controller
performs asynchronous updates to the central agent at the root
controller.

B. Realtime Implementation

Our algorithm can be implemented efficiently to run in
realtime. The system consists of three parts which can operate
concurrently: 1) learning and updating model parameters; 2)
inferring IW based on system state; 3) responding to IW
query. The first thread is responsible for collecting trajectory
and computing local model update increments, sending those
increments to the central agent, receiving latest model para-
meters from the central agent and updates the local model.
The second thread feeds the latest system state into the model
and computes the IW, and then caches the computed IW. Each
iteration takes about 1ms, measured in our simulation. These
two threads run in the background and they run as fast and as
frequently as they can. The third thread runs in the foreground
and replies to IW query instantly with the cached IW. In this
way, the delay experienced by the client is negligible. Note
that although the IW is only updated by the second thread
periodically, it is fast enough as the system state is unlikely
to undergo any significant change in 1ms.

In our online learning algorithm, the edge server needs
to query IW frequently so that sufficient data is collected
for learning. However, once we obtain a static model by
supervised learning, then the edge server does not need to
query IW frequently any more, since mobile traffic changes at
the scale of hour as suggested in [18].

C. Discussion on Supervised Learning

We mentioned supervised learning in the overview of our
method. There are several issues worthy of more discussion.
First, the dataset may include some data having a bad label, i.e.
action output, resulting in poor FCT, for instance, those data
collected at the start of learning before convergence. We can
correct those labels in a simple manner. As mentioned in the
adaptive learning algorithm, by monitoring state difference we
can divide a duration into several intervals, each having a
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Fig. 6. The architecture of 5G mmWave MEC simulator and the process
flow.

steady network environment. For each interval, we select the
most frequently used IW (which must be the best) as the label
for all data within that interval.

Second, some similar inputs may correspond to two or more
different action outputs, since all of them are almost the
optimal solution and result in the same performance. It is
better to assign a single label to those similar inputs. Thus,
we propose a simple way to do this. We evaluate the average
state of each interval and compare with each other. For those
intervals having a similar state, which can be evaluated by
using state difference and some threshold, we assign a single
label to the data within those intervals by selecting the action
leading to the lowest FCT. As such, the dataset is prepared
well for supervised learning.

VIII. SIMULATION SETUP

We simulate and evaluate our method extensively. We com-
pare our method with a naive method where IW is fixed
to 10 segments (IW-10 for short) and also with an existing
dynamic IW setting algorithm called SmartIW [7], [8] used in
search engines.

Here, we briefly introduce the SmartIW method. Its core
idea is using discounted Upper Confidence Bound (UCB)
algorithm to dynamically find the best IW so that total reward
is maximized. The reward is defined as a weighted sum of
throughput ratio and RTT ratio. According to their work, this
method periodically restarts the algorithm at the timescale of
minutes so as to follow the dynamic traffic. In addition, we use
the same IW candidates as in our method for the purpose of
comparison. The other parameters are set according to [7], [8].
Besides, it is unclear how to set the discount factor in their
work, and we set it to 0.99 in our simulation.

We build a simulator as shown in Fig. 6. It is mainly
composed of three components: a client, an edge server, and
an agent. The client and the edge server communicate through
a 5G mmWave cellular network. We measure that its downlink
throughput can reach 2.8 Gbps under continuous data transfer,
which is consistent to the result provided in [20]. The edge
server is connected to the P-GW (packet gateway) in the
backhaul network of a cellular system without disturbing the
existing system as suggested in [21]. The bandwidth between
the P-GW and the server is 10 Gb/s and the delay is 50

μs. Thus, bandwidth bottleneck locates at wireless links, and
congestion may happen at eNB. In our simulator, the agent
runs on the edge server. The simulator does not use the SDN-
based architecture introduced in Section VII-A for simplicity,
but this does not affect performance evaluation. We build the
simulator based on the network simulator ns3, and use the
module of 5G mmWave network in [20]. We implement our
agent by using TensorFlow in python.

In our simulator system, the client sends a request of 1 KB
to the edge server. Once the server receives the request, it sends
a response back to the client. The size of the responses are
uniformly distributed between 2 KB and 1024 KB. Before the
server is about to send a response, it asks the agent which
IW is the best with some state information transmitted as
input. The agent then computes the best IW according to those
information and returns the value back. We simulate the arrival
of the client requests as a Poisson process. In other words,
the inter-arrival time of client requests follows exponential
distribution. We vary its mean to generate different bursts and
traffic loads.

In our simulation, the eNB locates at coordinate (0, 0) m
and is at the height of 30 m. The client initially locates at a
random position within a square area of 600 m2 centered at (0,
0) m, is at the height of 1.5 m, and moves at 25 m/s, a typical
vehicle speed, with a random direction within the area.

In addition, we set ns3 simulator as follows:

1) use TCP Cubic as transport protocol;
2) set minimum retransmission timeout (RTO) to 200 ms

as in Linux;
3) set the TCP maximum segment size to 1024 B;
4) set TCP maximum transmit/receive buffer size to 1 MB;
5) set queue size of each NetDevice to 256 kB.

In our simulation, if not stated otherwise, the candidate set
of IW is (10, 16, 32, 64, 128, 256, 512) and hyperparameters
are set as follows:

1) the timer of early feedback (introduced in Section III-C)
is set to 100 ms, half of min RTO;

2) the approximation of early feedback is set to 300 ms;
3) the number of samples K for computing histogram input

(introduced in Section IV-A) is set to 50;
4) the discount factor in the objective function is set to 0.9,

that is we consider an action approximately affects the
performance of 50 flows in future at most;

5) the reuse factor is set to 10 (introduced in Section III-B);
6) step size η1 and η2 are set to 0.0008 and 0.002 respec-

tively. Our experience is first to find a suitable η2 so that
the advantage R̄t − Vω(st) reduces fast and fluctuates
near zero, and then to set η1 roughly half.

IX. PERFORMANCE EVALUATION

In this section, we demonstrate through simulation that our
adaptive online initial window decision method can simul-
taneously reduce flow completion time and limit congestion
effectively under dynamic traffic. In the following simulations,
our method uses 8 subagents to learn in parallel. For other
methods, we run simulations for 8 times with different random
seeds and take average results.
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TABLE I

FCT (ms) FOR DIFFERENT METHODS. THE PERCENTAGES IN EACH
BRACKET ARE THE REDUCTION RATIO COMPARED TO IW-10

Fig. 7. The empirical CDF of FCT under a high load. (a) less than 50 ms;
(b) greater than 50 ms.

A. Reduction of Flow Completion Time

We first investigate the effectiveness of our method under
different levels of static load.

1) High Load: We set the mean inter-arrival time of client
requests as 5 ms, and forms a high load for the simulation
system. First, we use FCT as a metric to compare our method
with IW-10 and SmartIW. We show the results in Table I.
It is seen that our method (NeuroIW) reduces average FCT by
10% and median FCT by 56% respectively compared to IW-
10 method. This suggests that our method can reduce FCT
significantly. In comparison, SmartIW method degrades the
mean FCT severely.

Moreover, we show the empirical cumulative distribution
function (CDF) of FCT in Fig. 7. To illustrate it clearly,
we divide its x-axis into two parts: the part less than 50 ms
and the part greater than 50 ms. In Fig. 7a, it is shown that our
method performs slightly better than SmartIW for the flows
whose FCT is small, and both methods are significantly better
than IW-10. From Fig. 7b, it is observed that 4% of the flows
experience congestion in our method, whose FCT is beyond
200 ms (min RTO). It is slightly larger than 1 percent when IW
is 10. However, near 10% of the flows experience congestion
in SmartIW, which is greatly larger than that in the other
methods. This explains why SmartIW has the same median
with our method but has a poor mean performance.

Next, we analyze why our method is better than others.
First, we find the best IW by a brute force iteration through all
candidate IW’s. As shown in Fig. 8a, FCT is a convex function
of IW. Each of three candidates (32, 64, and 128) achieves the
lowest FCT approximately, while 256 and 512 result in high
FCT.

Then, we show the histogram of IW for various approaches
in Fig. 9a. It is observed that for our method over 80% of the
flows use any one of the best IW candidates. In comparison,

Fig. 8. Average FCT for different IW settings, where the bars around the
symbols represent the 95 percent confidence interval. (a) high load; (b) low
load.

Fig. 9. The histogram of initial congestion window. (a) high load; (b) low
load.

for SmartIW the distribution is more even and the IW choices
of 256 and 512 occupy over 40 percent in total. As Fig. 8a
shows, these two candidates result in high FCT. This suggests
that SmartIW cannot avoid aggressive choices, which is the
reason for severe congestion and high average FCT.

Finally, we analyze where the benefit comes from. The flows
are binned into 11 groups based on flow size. The flow size of
the first group is less than 10 kB, the second group is between
10 kB and 100 kB, the third group is between 100 kB and
200 kB, etc. We show the mean FCT per class in Fig. 10a.
By comparing our method and IW-10, it is observed the flows
with medium size (between 100 kB and 900 kB) experience
FCT reduction. The reduction ranges from 2.4 ms to 7.6 ms.
The shorter flows (less than 100 kB) are affected by this and
suffers longer transmission time.

2) Low Load: We also evaluate the performance under a
low load. We set the mean inter-arrival time of client requests
as 50 ms. The results are shown in Table I. It is seen that
our method achieves the best result again. It reduces mean
FCT by 53% and reduces median FCT by 67% compared to
IW-10 method. In comparison, the reduction ratio of SmartIW
is lower. Moreover, we illustrate the empirical CDF of FCT
in Fig. 11. In this case, our method performs slightly better
than SmartIW both in the tail and the median performance.

We also analyze why our method is better than others.
We simualte each IW candidate and find that 256 is the best
choice in this case, as shown in Fig. 8b. Then, we show the
histogram of IW for these methods in Fig. 9b. It is observed
that when using our method over 80% of the flows use IW
of either 128 or 256 (the best two candidates). In comparison,
when using SmartIW only 40% of the flows use those best
candidates, while the other 60% of the flows use the other
candidates resulting in high FCT.
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Fig. 10. Performance per flow class based on flow size. (a) FCT under a high load; (b) FCT under a low load; (c) FCT reduction ratio under a low load.

Fig. 11. The empirical CDF of FCT under a low load. (a) less than 50 ms;
(b) greater than 50 ms.

Fig. 12. The probability of selecting each IW choice as a training process
of our method goes. (a) high load; (b) low load.

Moreover, by comparing the histogram of IW for SmartIW
method under two levels of load in Fig. 9, we find that there
is no much difference between the two distributions. This
suggests that SmartIW does not adapt itself to different traffic.
In comparison, we observe that our method has very different
IW distributions under two levels of load, which suggests that
our method has an adaptation capability.

We also show the mean FCT per class in Fig. 10b. By com-
paring our method and IW-10, it is observed that all flows
larger than 10 kB experience FCT reduction, 18 ms at most.
Then, we illustrate the reduction ratio in Fig. 10c. It is
observed that the reduction ratio is significant, 69 percentage
at most.

B. Convergence of Training Algorithm

Next, we illustrate how our method converges to the best
IW as a training process goes. In Fig. 12, we show how the
probability of selecting each IW choice changes as a training
process goes. Each step corresponds to 8 subagents and a
batch size (100 flows) per subagent. The value of each step is
averaged over total 800 flows.

For a high load, as shown in Fig. 12a, initially we have a
uniform probability. As the training process goes, the proba-
bility of selecting 128 (one of the best candiates) increases

Fig. 13. The average FCT as a training process goes. (a) high load; (b) low
load.

gradually and reaches 1 after about 40 steps; while the
probability of selecting any other candidate decreases and
reaches 0 finally. The similar phenomenon appears under a
low load as shown in Fig. 12b. In this case, our algorithm
converges to 256, which is the best candidate under a low
load.

We also show the average FCT as a training process goes
in Fig. 13. It is observed that after around 30 steps, our
method converges to the lowest FCT. For high load, it takes
around 15 seconds; for low load, it takes around 150 seconds.
No matter which case, it is sufficiently short. However, for any
other method the performance fluctuates without convergence.

C. Adaptation to Dynamic Load

Next, we simulate a dynamic load where the mean inter-
arrival time of client requests alternates between 50 ms (low
load) and 5 ms (high load), and demonstrate that our algorithm
can adapt to the dynamic load. In our simulation, each type of
load lasts for 8000 requests, and two types of load alternate
twice. For our algorithm, we set the threshold of the state
difference to 0.05.

1) Effectiveness of Our Algorithm: First, we evaluate the
performance using FCT as shown in Fig. 14a. A point at each
step in the figure is the average value over 8 subagents and
100 flows per subagent. It is shown that the FCT drastically
changes around every 80 steps. At the 80th step and the 240th
step, the system transforms from a low load to a high load.
At those points, the FCT increases drastically, worse than
30 ms. However, our algorithm captures those changes, and
then the FCT reduces gradually and reaches a low value after a
short time (around 30 steps). Moreover, it is observed that our
adaptive algorithm obtains the best performance under each
type of load. We get 10 ms under a low load and 20 ms under
a high load.

Second, we analyze how our algorithm adjusts IW as the
dynamic load goes. As shown in Fig. 14b, it is observed that
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Fig. 14. Average performance under a dynamic load. (a) FCT (ms); (b) IW
(segments).

Fig. 15. Interesting variables under a dynamic load. (a) the state difference
Δs; (b) average entropy.

IW changes closely following the dynamic load. In the first
phase the IW increases and reaches 256 (the optimal solution
under a low load); in the second phase it reduces quickly to
64 (an optimal solution under a high load); in the third phase
it increases and reaches 256 again; in the final phase, it drops
rapidly and reaches 128 (another optimal solution under a high
load).

Recall that we detect the change of environment by mon-
itoring the difference between consecutive histograms as dis-
cussed in Section VI. We evaluate how the state difference
changes during simulation, and show the result in Fig. 15a.
It is observed that three spikes appear in the simulation with
an interval of near 80 steps, which is consistent with the load
changes. Furthermore, we observe that the peak values are
larger than the threshold set previously, and thus it activates
the re-learning process. Moreover, we illustrate the average
entropy in Fig. 15b. It is shown that the entropy is close to
2 (the entropy of uniform probability) at the beginning, and
then it drops gradually as the learning process goes. At the
beginning of each new interval, it rockets to the starting value
since the re-learning is activated by our adaptive method, and
then it drops again.

2) Comparison With Other Methods: In this section,
we compare our algorithm with the other methods (IW-10 and
SmartIW). We let SmartIW restart itself every 2000 requests
(shorter than the load interval of 8000 requests) so that it has
chances to adjust itself under a new load.

As shown in Fig. 14a, it is obvious that our method
achieves the lowest FCT during the whole four load intervals.
Specifically, for SmartIW, it performs slightly worse than our
method under a low load, and performs very bad under a high
load (in the second and the fourth load intervals). As shown
in Fig. 14b, it is observed that SmartIW adjusts IW in the

Fig. 16. Performance comparison of a supervised-learned model and the
adaptive online learning algorithm. (a) FCT (ms); (b) IW (segments).

similar way under both types of load. This demonstrates that
SmartIW cannot perceive the load change and neither adapt
itself.

D. Supervised Learning

As mentioned in our method, we can improve the effective-
ness and efficiency by collecting data during online learning
and run a supervised learning later on. In this simulation,
we collect data from the above simulation in Section IX-C and
obtain 2.5× 105 samples in four phases. There are bad labels
in each phase. Besides, the second and the fourth phases have
similar state, but have different actions. Thus, we process the
dataset as introduced in Section VII-C. As a result, the samples
in the first and the third phases are labeled with 256; while
the samples in the other phases are labeled with 64.

We use the same neural network architecture as shown
in Fig. 3. We obtain a model with accuracy above 99.4%
after training for one epoch. Then, we test its performance
under the same dynamic traffic as in the above simulation.
We run the test eight times and get the average results.
Fig. 16a and Fig. 16b show the change of FCT and the change
of IW respectively, and also show the comparison with the
result achieved by the adaptive online learning algorithm. It is
observed that the supervised-learned model makes correct IW
decisions under dynamic traffic. Moreover, its adaptation is
more responsive.

E. Evaluation With LTE Mobile Traffic Distribution

In this section, we evaluate our method with an empirical
distribution of TCP flow sizes in LTE networks as shown
in Fig. 17, which is studied from a real-world LTE packet
trace in [9]. This distribution exhibits strong heavy-tail char-
acteristics, 95% of flows are less than 85.9 kB and the
top 0.6% of flows ranked by payload sizes, each with over
1 MB payload, account for 61.7% of the total downlink bytes.
Next, we set inter-arrival time of client requests following
exponential distribution with mean as 2 ms, 1 ms, and 500
μs. As such, we can generate three kinds of traffic. In Fig. 18,
we illustrate the estimated throughput (tested per interval
of 10 ms) when we set mean inter-arrival time to 2 ms,
1 ms, and 500 μs in turn. As such, we can mimic the
mobile traffic patterns, characterized by peak-valley feature,
observed in 3G/LTE cellular networks [18]. We test and show
the concurrency of flows and the CDF of instant throughput
in Fig. 19.
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Fig. 17. An empirical distribution of TCP flow sizes in LTE network.

Fig. 18. The throughput vs time. The throughput estimated when we set
mean inter-arrival time to 2 ms, 1 ms, and 500 µs in turn.

In our simulation, we set each type of traffic last for
ten thousands requests. We use [10,16,32,64,128,256] as IW
candidates and set the threshold of the state difference to 0.02.
We show the change of average FCT in Fig. 20a. The same as
above, our method achieves the lowest FCT during all three
load intervals. SmartIW performs bad under medium load and
high load (the last two load intervals). From Fig. 20b, it is
observed that SmartIW adjusts IW in the same way no matter
under which type of load. However, our method adapts to load.
As load becomes high, our method reduces IW adaptively.

Next, we analyze the performance under each type of load.
The same as above, we also classify flows based on flow size
and analyze FCT per class. Here, we have 12 groups. Except
the first 11 groups similar as before, we add a new including
the flows larger than 1 MB. We show mean FCT per flow class
in Fig. 21 and reduction ratio per flow class in Fig. 22. First,
we observe that for all types of loads, all flows with medium
size (between 10 kB and 1 MB) experience FCT reduction.
The reduction is over 10 ms for a majority of groups and
reaches 20 ms for some. The reduction ratio is over 30% for a
majority of groups and reaches 50% for some, which is very
significant. For the short flows less than 10 kB, their FCT
exhibit increasing in different levels. It is because these flows
are affected by other flows with large IW.

Lastly, we analyze the performance evaluated over all flows.
Under low load, NeuroIW and SmartIW achieve compara-
ble reduction of 22% over IW-10. As shown in Fig. 23a,
we observe that both methods use very similar IW distribution
during this phase. Under medium load, our method is better
than SmartIW by around 7%, and better than IW-10 by around
9%. As shown in Fig. 23b, our method uses lower IW than
SmartIW. Under high load, our method is significantly better
than SmartIW by around 45% and comparable with IW-10.
As shown in Fig. 23c, our method uses much lower IW than
SmartIW.

F. Necessity of Adaptive Algorithm

In our method, we propose an adaptive learning algorithm
to detect the change of environment and restart learning
accordingly. Here, we demonstrate its effectiveness. We use
the same settings as in Section IX-C and [16, 64, 256, 512]

Fig. 19. Traffic characteristics. (a) The concurrency of flows; (b) The CDF
of instant throughput.

Fig. 20. Average performance under LTE mobile traffic. (a) FCT (ms); (b) IW
(segments).

as IW candidates. We show results in Fig. 24. It is observed
that without adaptive algorithm entropy drops quickly as the
training process goes and reaches zero at the 80th step. As a
result, the RL algorithm loses exploration ability, and IW is
stuck at 256, which is a bad choice for the following high
load. In comparison, by using adaptive algorithm, the learning
is restarted when system traffic changes. The lower FCT is
achieved after re-learning.

G. Evaluation of Policy Function

Here, we verify that the design of policy function is rea-
sonable. In our design, we take the latest K samples and
construct a histogram as the input of a 1D CNN neural
model. First, we verify whether 1D CNN performs better than
a simple neural network (SNN). We let network input and
output unchanged, but use only one 128-neuron hidden layer
with batch normalization used. We evaluate this method in
the same environment as above (Section IX-F), and show
comparison results in Fig. 25. Note that, since we change
the policy architecture, we have to set the learning rate
differently for SNN: actor learning rate is 0.001, and critic
learning rate is 0.0026. From Fig. 25a, we observe that our
method (histogram CNN) obtains lower FCT than SNN. From
Fig. 25b, we observe that the algorithm with SNN does not
converge to the best IW. We also show the RL advantage value
(introduced in Section V) in Fig. 25c, which should reduce first
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Fig. 21. Mean FCT per flow class based on flow size under LTE mobile traffic. (a) low load; (b) medium load; (c) high load.

Fig. 22. The reduction ratio of mean FCT per flow class based on flow size under LTE mobile traffic. (a) low load; (b) medium load; (c) high load.

Fig. 23. The histogram of initial congestion window under LTE mobile traffic. (a) low load; (b) medium load; (c) high load.

Fig. 24. Comparison with and without adaptive algorithm. (a) FCT; (b) IW; (c) entropy.

Fig. 25. Evaluation on various policy functions. (a) FCT; (b) IW; (c) advantage value.

and then fluctuate near zero. It is observed that in the situation
of SNN the value drops as expected, which demonstrates that
hyperparameters are set properly. Moreover, it is observed that
our method is more stable than SNN case.

We also evaluate the policy of inputting the latest K
samples into the above SNN. They achieve similar results as
shown in Fig. 26. This shows that our framework is not very
sensitive to the choice of the underlying neural net model.
However, using raw samples as input has a major drawback:
it couples the neural net architecture with the number of input
samples K . The first layer of the SNN has K × D × N
parameters, where D is the dimension of a single raw sample
and N is the number of neurons in the first hidden layer. As K
increases, the parameter count of SNN expands quickly. In our
case, the first layer of SNN has more than 38k parameters

(K = 50, D = 6, N = 128), while the entire CNN has
less than 30k parameters. In addition, using raw samples is
inflexible because K has to be fixed before training, it is
impossible to vary K during training. This hinders certain
application, for example, using raw samples in a fixed time
window as input. Also, it makes model reuse difficult as
models trained with different K are incompatible. As such,
we advocate the use of histogram instead of raw samples as
input.

H. Evaluation of K

We also evaluate the impact of the number of samples used
to generate histogram input, that is K . We set its value to
20, 50 (default value), 128 and compare their performance.
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Fig. 26. Comparison of our method and SNN policy with input of raw
sample.

Fig. 27. Evaluation on the impact of the number of samples for computing
histogram input. (a) FCT; (b) IW.

The simulation environment is the same as above. The results
are shown in Fig. 27. It is observed that with K being 128,
the learning algorithm converges faster than default case;
with K being 20, the learning algorithm converges slower
than default case in the first phase and does not converge
to optimum in the second phase. The reason is that when
K becomes larger, histogram input becomes more stable
and improves learning; while when K becomes very small,
histogram input becomes unstable and degrades learning.

X. RELATED WORKS

We review the existing works related to our problem, and
categorize them into five groups as follows.

A. MEC and SDN-Based MEC

Tran et al. in [2] surveyed three representative use-cases
of MEC including mobile-edge orchestration, collaborative
caching and processing, and multi-layer interference cancel-
lation. They demonstrated the benefits and applicability of
MEC in 5G networks. Baktir et al. in [3] made an extensive
survey to demonstrate that SDN has capability to solve the
complex design problems in MEC systems. The SDN-enabled
edge Computing can provide intelligent network manage-
ment including service discovery, service commissioning and
migration, performance tuning and optimization, and user
handover. Huang et al. in [4] proposed and implemented a
SDN-based MEC framework, which achieved a significant
latency reduction.

B. Increasing Initial Congestion Window

Some researchers have proposed to increase initial conges-
tion window to reduce the latency of HTTP responses [5], [6]
and the flow completion time of high performance computing

traffic in software defined networks [22]. However, IW is still a
fixed value in these works. Recently, Nie et al. in [7] proposed
to dynamically set initial window with reinforcement learning
to reduce web latency. Its core idea is using discounted Upper
Confidence Bound (UCB) algorithm to dynamically find the
best IW so that total reward is maximized.

C. Machine Learning Based Congestion Control

Some researchers proposed to use machine learning to
address internet congestion control. Remy [23] is the first
notable computer-generated congestion control method. In this
approach, the designer specifies some assumptions about the
network and a performance optimization objective, then Remy
produces the congestion control rules. PCC [24] is another
congestion control architecture in which each sender con-
tinuously observes the connection between its sending rates
and empirically experienced performance, enabling it to adopt
the ones leading to the largest utility. PCC Vivace [25] is a
very recent work based on PCC. It employs provably optimal
online optimization based on gradient ascent to achieve high
utilization of network capacity, swift reaction to changes, and
fast and stable convergence.

D. RL-Based Congestion Control

Research community have proposed to use reinforcement
learning to address internet congestion control, which enables
a network to automatically control itself by learning from
experience. QTCP [26] adopts a Kanerva coding to approx-
imate value functions. Their simulation results show that
QTCP can achieve higher throughput while maintaining low
transmission latency. Three other works [27]–[29] adopt deep
neural network as the policy function for congestion control.
Aurora [27] suggests that DRL-based protocol can distinguish
non-congestion loss from congestion-induced loss, and adapt
to variable network conditions. TCP-Drinc [28] adopts LSTM
to handle the correlation in time series. DRL-CC [29] is a
design for multi-path TCP congestion control. It utilizes a
recurrent neural network for learning a representation for all
active flows.

E. Deep RL-Based Resource Management

Some researchers have proposed to use deep reinforcement
learning to address challenging resource management prob-
lems. Mao et al. in [12] proposed to use DRL to generate
adaptive bitrate algorithms automatically to optimize user
quality experience. Chinchali et al. in [14] proposed to use
DRL to optimally schedule delay-tolerant IoT traffic in cellular
networks. They demonstrated that their scheduler can enable
mobile networks to carry more data with minimal impact on
existing traffic. Li et al. in [15] proposed to use DRL to solve
parameter tuning for storage performance optimization, which
is slow and costly in practice. They evaluated in a file system
and demonstrated a significant increase in I/O throughput.
Mirhoseini et al. in [13] proposed to use DRL to optimize
device placement for TensorFlow computational graphs, that
is to predict which subsets of operations should run on which
of the available devices.
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XI. CONCLUSION

In this paper, we investigate the IW decision problem
in mobile edge computing, that is to adaptively adjust ini-
tial congestion window such that flow completion time is
optimized, while congestion is minimized. We propose an
adaptive online decision method to solve the problem, which
learns the best policy (a neural network function) using deep
reinforcement learning. We propose several techniques to
ensure our algorithm can converge stably and fast. To further
improve the responsiveness and efficiency of IW decision,
we propose an approach based on supervised learning, which
first collects data during online learning, and then trains a
policy with the processed data. We also propose a SDN-
based implementation of our method. Our simulations in a
5G mmWave MEC simulator demonstrate that our algorithm
can effectively reduce FCT with little congestion caused.
Moreover, it can adapt IW to dynamic network conditions.
We also demonstrate the effectiveness of our policy design
and some parameter setting.
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