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Abstract—Public auditing schemes for cloud storage systems have been extensively explored with the increasing importance of data
integrity. A third-party auditor (TPA) is introduced in public auditing schemes to verify the integrity of outsourced data on behalf of
users. To resist malicious TPAs, many blockchain-based public verification schemes have been proposed. However, existing auditing
schemes rely on a centralized TPA, and they are vulnerable to tempting auditors who may collude with malicious blockchain miners to
produce biased auditing results. In this paper, we propose a blockchain-based decentralized public auditing (BDPA) scheme by utilizing
a decentralized blockchain network to undertake the responsibility of a centralized TPA, and also mitigate the influence of tempting
auditors and malicious blockchain miners by taking the concept of decentralized autonomous organization (DAO). A detailed security
analysis shows that BDPA can preserve data integrity against tempting auditors and malicious blockchain miners. A comprehensive
performance evaluation demonstrates that BDPA is feasible and scalable.
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1 INTRODUCTION

C LOUD storage has attracted extensive attention from
both academic and industrial research communities for

its huge advantages of costs, performance and management
[1]–[3]. Cloud users can reduce the expenditure on software,
hardware and services by storing data on public cloud
servers. And meanwhile they can access outsourced data
efficiently and remotely over the Internet without having
to stay nearby their computers. Nowadays, more and more
users choose to migrate their local data to the cloud storage
that is managed by professional cloud service providers
(CSPs) such as Amazon’s cloud and Google’s cloud [4], [5].

Although cloud storage brings a number of benefits
for cloud users, data outsourcing has also incurred many
critical security issues [6]. One of the most important se-
curity concerns is data integrity. In reality, outsourced data
may be corrupted because cloud servers may suffer from
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external rival attacks and internal hardware or software
failures [7], [8]. In addition, a cloud server is an independent
and untrusted administrative entity and it may delete some
cloud data that users have never accessed to save storage
space, or hide data loss events to maintain its reputation
[9], [10]. Unfortunately, most cloud users often delete locally
stored backup data after uploading their data to the cloud
server. Due to these abovementioned factors, it is important
for users to audit the integrity of their outsourced data
periodically.

To ensure the integrity of outsourced data, various cloud
storage auditing techniques have been popularly employed
[11]–[16]. In traditional public auditing schemes, users often
authorize a TPA to conduct public auditing of their out-
sourced data periodically [17], [18]. The trustworthy TPA
can also provide users with dependable auditing results
and reduce users’ communication and computation burden
[19]. However, in traditional public auditing schemes, the
TPA is assumed to be honest and reliable, which is a
strong assumption in reality because it is quite possible
for the auditor to be corrupted [20]. For example, an ir-
responsible auditor may always produce a valid auditing
report without performing the verification process to save
the computation costs [21]. To thwart malicious auditors,
many blockchain-based public auditing schemes have been
proposed [20]–[23]. In most of existing blockchain-based
schemes, blockchain technology [24]–[26] is utilized as a
secure source of time-dependent pseudorandomness and
undeniable storage evidence. Specifically, auditors usually
extract block values such as Nonce and BlockHash from the
blockchain to generate random challenge messages which
contain indexes of selected data blocks. They also generate
log files for auditing procedures and store hash values of
log entries in the blockchain.

However, most existing blockchain-based schemes suffer
from tempting auditors and have a centralization problem.
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In these schemes, the TPA often utilizes the unpredictable
values in a proof-of-work (PoW) blockchain where the
block values are generally determined by miners. In reality,
a malicious auditor can incentivize malicious blockchain
miners to ignore newly mined blocks if the generated
challenge messages contain certain data blocks. We call
this malicious auditor a tempting auditor. This biased be-
havior has non-negligible influence on the auditing re-
sults. Moverover, most exisiting blockchain-based schemes
lack rigorous proof for the randomness and reliablity of
blockchain values. Furthermore, they have a centralized
TPA which is required to compute some basic materials
(e.g., challenge messages) and verify the cloud server’s
proof information by computing bilinear mappings. Once
the TPA is compromised because of external attacks or
internal failures, the auditing procedures can not work
normally and may generate incorrect auditing results. In a
real-world situation, the availability of auditing services can
not be always guaranteed. Therefore, the centralized TPA in
existing blockchain-based schemes is vulnerable to a single
point of failure (SPOF).

In this paper, we propose a new blockchain-based decen-
tralized public auditing (BDPA) scheme to mitigate the limi-
tations of the tempting and centralized auditor. In BDPA, we
explore the idea of DAO [27] to generate challenge messages
in the Ethereum blockchain and eliminate the centralized
auditor. This new mechanism can provide better flexibility
and is more secure against malicious miners. Moverover,
we integrate the state-of-the-art public auditing schemes
[20], [21] with our framework by removing the central-
ized TPA and utilizing a smart contract. We also evaluate
the performance of the designed smart contract and the
integrated schemes. Detailed evaluation results show that
BDPA has acceptable performance in terms of efficiency and
transmission costs. In addition, our BDPA can integrate with
many other auditing schemes, and provide better scalability
and availability. Specifically, the main contributions of this
paper can be summarized as follows:

• We propose a decentralized public auditing frame-
work for cloud storage, which gets rid of the central-
ized TPA and resists the tempting auditor who may
generate biased results.

• We design a collaborative mechanism to help gener-
ate challenge messages by exploring the idea of DAO
and a smart contract, which mitigates the impact of
malicious blockchain miners.

• We experimentally validate that our BDPA has good
performance and is scalable to the existing auditing
schemes while removing the hidden dangers of the
tempting and centralized auditor.

The rest of the paper is organized as follows. We firstly
present the related works in Section 2. In Section 3, we
review Xue et al.’s scheme and analyze the weakness of
existing blockchain-based schemes. And in Section 4 we
present the system model, threat model, design goals and
some preliminaries. Then we illustrate detailed construction
and security analysis in Section 5. The performance evalua-
tion is shown in Section 6. Finally, we conclude the paper in
Section 7.

2 RELATED WORK

2.1 Traditional public auditing

To ensure the integrity of outsourced data, Juels et al. [28]
firstly proposed the ”proofs of retrievability” (POR) scheme,
which relies on indistinguishable blocks hidden among file
blocks that serve as sentinels to detect cloud data corruption.
After that, Ateniese et al. [9] proposed the ”provable data
possession” (PDP) technique, which is a variant of POR that
can support an unbounded number of challenge queries.
Considering the large data volumes and the limitation of
communication resources, cloud users usually adopt pub-
lic auditing schemes to help audit the integrity of their
outsourced data periodically. In 2013, Shacham et al. [29]
proposed the compact POR scheme, which utilizes homo-
morphic authenticators to yield compact proofs and also
support public verification. Following this work, many pub-
lic auditing schemes have been proposed [6], [30]. However,
these public auditing protocols are mainly based on public
key infrastructure (PKI) systems which are inefficient and
cumbersome.

To avoid managing users’ certificates, identity-based
public auditing schemes have been proposed [31], [32]. In
these schemes, a publicly known string representing an
individual or organization is used as a public key. A trusted
third party, also called the private key generator (PKG),
generates private keys for all cloud users [33]. However,
identity-based schemes have the key escrow problem and
are vulnerable to malicious PKG who controls all users’
private key [34]. Therefore, certificateless public auditing
schemes have been proposed [21], [23], where the key gen-
eration process is split between the PKG and the user.

2.2 Blockchain-based public auditing

Recently, investigations of the credibility of TPA have at-
tracted researchers’ attention. In most traditional schemes,
the auditor is assumed to be honest and reliable. This is
a strong assumption because corruption of auditors could
happen in practice [20]. With the popularity of blockchain
technology, many blockchain-based schemes have been
proposed to resist malicious auditors [20]–[23]. In 2014,
Armknecht et al. [22] proposed a blockchain-based auditing
scheme which utilize random values in Bitcoin [24]. After
that, Zhang et al. [23] also proposed a certificateless public
auditing scheme in cyber-physical-social systems.

In 2019, Xue et al. [20] proposed an identity-based pub-
lic auditing scheme which utilized Bitcoin as a random
source and stored log hash values in transactions in the
Bitcoin blockchain. Later, Zhang et al. [21] also proposed
a blockchain-based certificateless auditing scheme against
procrastinating auditors which utilize Ethereum platform
and gave security analysis for malicious blockchain miners.
Recently, Zhang et al. [35] proposed a conditional identity
privacy-preserving public auditing mechanism for cloud-
based WBANs and integrate Ethereum blockchain into this
scheme. However, most of the existing blockchain-based
public auditing schemes are based on a centralized TPA and
cannot thwart tempting auditors who can incentivize miners
to generate biased auditing results.
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Fig. 1. System model of existing blockchain-based public auditing
schemes

3 PROBLEM STATEMENT

3.1 Review of Xue et al.s scheme

Recently, Xue et al. [20] proposed an identity-based public
auditing (IBPA) scheme against malicious auditors. Later,
Zhang et al. [21] proposed a certificateless public verifica-
tion scheme against procrastinating auditors (CPVPA). They
both used the blockchain technology. The general system
model of their schemes, as shown in Fig. 1, involves four
entities: a PKG, a user, a cloud server (CS), and a TPA.

To clarify the limitations of above schemes, we illustrate
technical details of IBPA and show general procedures
of blockchain-based public auditing schemes. As demon-
strated in Fig. 2, the framework of IBPA among various
entities proceeds as follows:

Setup Phase. During this phase, the authorized PKG
initializes the system by calling the Setup algorithm and
assigns secret keys to each user by calling the KeyGen
algorithm. The user can outsource data blocks and corre-
sponding anthentication tags to the cloud server by calling
the TagGen algorithm.

Setup(1λ)→ (PK,MSK,Params). The PKG generates
two cyclic groups G1, G2 of same prime order p with P
as a generator of G1, and defines a bilinear map e : G1 ×
G1 → G2. Then, it selects a random number s ∈ Zp as
the master secret key MSK and computes the public key
PK = sP . In addition, it also defines a set of resistant hash
functions including: H1, H2 : {0, 1}∗ → G1, h : G1 → Zp
and H : {0, 1}∗ → Zp. It also generates a common state
parameter w. The public parameter is set as:

Params = (G1,G2, e, p, P,H1, H2, H, h).

KeyGen(PK,MSK, ID) → (SKu, PKu). Given a user
identity ID, it hashes ID to two elements Pu,0 =
H1(ID, 0), Pu,1 = H1(ID, 1) and computes corresponding
secret keys as:

Qu,0 = sPu,0,

Qu,1 = sPu,1.

The user’s secret key is SKu = {Qu,0, Qu,1}, and the
public key is PKu = {ID, Pu,0, Pu,1}.
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Fig. 2. Procedures of existing blockchain-based public auditing schemes

TagGen(Params, F, SKu)→ Settag . The user splits the
data file F into n blocks, F = m1||m2||· · · ||mn. For each
block mj , the user chooses a random r ∈ Zp and a file name,
and generates an authentication tag (Sj , Tj) using Params
and SKu. The set of all authentication tags {Sj , Tj}j∈[1,n] is
denoted by Settag .

(Sj , Tj) = (rH2(w||j) +H(name||j)Qu,0 +mjQu,1, rP ),

Settag = {(Sj , Tj)}j∈[1,n].

Then the user sends {F, Settag} to the cloud server and
deletes the data file F from the local storage.

Audit Phase. In this phase, the TPA generates a chal-
lenge message by calling the ChallGen algorithm. The CS
generates the proof information by calling the ProofGen
algorithm. Then the TPA verifies the proof information by
calling the Audit algorithm. The TPA also create log entries
and store the hash value in the blockchain. And the user can
check the validity of TPA’s log file by calling the CheckLog
algorithm.

ChallGen(Params, t) → C. The TPA obtains the Nonce
in the corresponding block based on the time t and chooses
a random l-element subset J = {a1, a2, · · · , al} from the set
[1, n]. Then it chooses a random vj ∈ Zp for each j ∈ J and
generates a random challenge message C = {j, vj}.

ProofGen(Params,C) → D. After receiving the chal-
lenge message C from the TPA, the CS chooses a random
number x ∈ Zp and computes four values based on the data
blocks, authentication tags and challenge messages.

µ = x−1(
al∑

j=a1

mjvj + h(y)),

y = xPu,1,

(S, T ) = (
al∑

j=a1

vjSj ,
al∑

j=a1

vjTj).

Then the cloud server sends the proof information D =
{S, T, µ, y} to the TPA.

Audit(Params,D) → 0/1. The TPA audits the proof
information D by calculating cryptographic elements and
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verifying a bilinear equation.

e1 = e(
al∑

j=a1

H2(w||j)vj , rP ),

e2 = e(
al∑

j=a1

H(name||j)vjPu,0 + (µy − h(y)Pu,1), sP ),

e(S, P )
?
= e1 · e2.

This algorithm outputs an auditing result of either 0 or 1
for the TPA, where 0 means reject and 1 means accept. Then
the TPA creates a log entry (t, nonce, C, (S, T, µ, y), 0/1)
and store the hash values of log entries in the blockchain.

CheckLog(Params, Flog)→ 0/1. The user can check the
log information in the blockchain and verify the correctness
of auditing results. The user chooses a random subset B =

{b1, b2, · · · bl′} from C and computes SB =
∑b

l
′

j=b1
vjSj .

Then the user verifies the following equation.

e
′

1 = e(

b
l
′∑

j=b1

H2(w||j)vj , rP ),

e
′

2 = e(

b
l
′∑

j=b1

H(name||j)vjPu,0 + (µy − h(y)Pu,1), sP ),

e(SB , P )
?
= e

′

1 · e
′

2.

This algorithm outputs the checking result as 0 or 1 for
the user, where 0 means reject and 1 means accept.

3.2 Weaknesses of existing blockchain-based public
auditing schemes

In this section, we describe our motivation and analyse
two main vulnerabilities in the latest blockchain-based
public auditing schemes IBPA [20] and CPVPA [21]. IBPA
and CPVPA both utilized the unpredictable values in the
blockchain and designed log entries for the auditor, which
explored the possibility of the combination of blockchain
technology and public auditing. Nevertheless, they have
limitations which can be summarized as follows:

• Collusion. The two latest blockchain-based schemes
cannot thwart tempting auditors which can collude
with miners in the blockchain.

• Centralization. Most of existing public auditing
schemes introduce a centralized TPA which may be
vulnerable to a single point of failure.

To be more specific, we illustrate the details of their
two main limitations (collusion and centralization) in the
following discussion.

1) Collusion analysis. In existing schemes, the collu-
sion between tempting auditors and blockchain miners are
not fully considered. Specifically, the malicious blockchain
miners can check block values before broadcasting newly
mined blocks. If the result does not fulfill the requirements
of tempting auditors, the miners can throw those blocks
away. In addition, the malicious blockchain miners can build
a chain longer than the honest one to change the selected
data blocks. In such a sitiation, the randomness of challenge
messages is compromised. Therefore, the tempting auditor
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Fig. 3. Probability that the adversary wins

can also collude with the CS to avoid choosing lost data
blocks and hide corruption events from users, and this
deviates from the primary objective of public verification
to detect the data corruption. It is worth clarifying that the
resistance against tempting auditors is vitally important for
public auditing schemes in practice.

We consider that the only attack a tempting auditor
can perform is to bias the values of decisive block Bld
corresponds to the user’s specified time by incentivizing
malicious miners. Here, the adversary’s requirement is that
the indexes of challenged blocks exclude the corrupted ones.
Note that the adversary can know in advance which future
block will be decisive for the goal it tries to achieve. Now,
we compute the probability that the adversary wins. The
adversary model and security game model follow the ones
proposed by Pierrot et al. [36].

We assume an adversary A who aims at biasing Bld to
break the security of existing blockchain-based public audit-
ing scheme. The probability that the adversary A wins are
shown in Fig. 3. The indexes of corrupted data blocks form a
set ε.Awins whenever none of indexes of challenged blocks
fall in ε. Let χ : ε 7→ {0, 1} be the characteristic function that
predicates whether a given value meets A’s requirement.
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And we denote by P the probability for the values of Bld to
satisfy χ(Bld) = 1. We stress that P is essentially a probability
that the corrupted data set can pass the auditor’s verification.
As evaluated by [9], [17], [30], when ρ fraction of data is
corrupted and c is the number of randomly (uniformly)
sampling blocks, we clearly have

P = (1− ρ)c. (1)

We denote by PA the probability that A wins. And λ
denotes A’s relative power with respect to the total power
of all miners. We denote that the initial block is indexed
by 0 when the malicious miners start mining. The k-th
block is the decisive block, whose extract values determine
whether or not the adversary wins. A could try to mod-
ify an unpleasant decisive block until the blockchain has
been lengthened by ∆ blocks. In our analysis, we assume
λ < 51%. According to [36], we know that:

PA = 1− Pr(e1) · (Pr(e2) + Pr(e3)), (2)

where e1, e2, e3 are events defined as:
– e1: the first broadcast decisive block Bld is such that

χ(Bld) = 0.
– e2: given that event e1 occurred, A fails to find any

decisive block Bl
′

d such that χ(Bl
′

d) = 1.
– e3: given that event e1 occurred, A manages to find a

decisive block Bl
′

d such that χ(Bl
′

d) = 1 but not to compute
a branch sufficiently long to replace the main one.

For simplicity, we omit the complex technical equations
for calculating the probabilities of event e1, e2, e3. The
additional technical details can be found in [36].

We show the probability that the adversary A wins in
Fig. 3, where ρ = 1%. When λ = 1/5, c = 460, the prob-
ability that A wins is 1.11%. When λ = 1/2, c = 460, the
probability that A wins is 8.17%, which increases quickly.
Note that both probability values are larger than the an-
alytical results in [21]. For λ = 1/4, c = 400 and a fixed
value of k = 18 that roughly corresponds to an adversary
A that starts mining with three hours in advance, PA tends
to 2.95% which is more than twice the probability value
of 1.305% discussed in [21]. This probability that is still
considerable in reality because there are enormous cloud
users with data auditing requirements.

2) Centralization analysis. In most existing public au-
diting schemes, there exist a centralized TPA. Once the TPA
is compromised due to hardware or software failures, some
incorrect auditing results may be computed and recorded
in the blockchain, which may give users incorrect auditing
results. In other words, the availability of auditing services
can not be guaranteed once the TPA fails to work normally.
Moreover, it might be too late for users to recover the data
loss or damage because they usually check the auditing
results over a long period of time.

According to the previous discussion and analysis, we
summarize the drawbacks of IBPA [20] and CPVPA [21]
as follows. To eliminate the above two limitations, we also
propose BDPA which replaces the centralized TPA with a
decentralized blockchain network in Section 4.

• IBPA drawback. In IBPA [20], the challenge message
is generated based on the Nonce value of Bitcoin.
It has become widespread to utilize the inherent
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Fig. 4. System model

unpredictability of blockchains as a source of pub-
lic randomness. However, this idea lacks a security
model. In IBPA, they do not give any rigorous secu-
rity analysis when miners are malicious and collude
with tempting auditors.

• CPVPA drawback. In CPVPA [21],many BlockHash
values in the Ethereum decide challenge messages.
The authors analyzed the situation where malicious
miners can sample biased challenge messages. Nev-
ertheless, they only considered the situation where
malicious miners can affect the latest block. In other
words, the miners can bias challenge messages only
by biasing the next broadcast block. In reality, an
adversary can be informed by the tempting auditor
in advance which future block will be decisive for
the goal it tries to achieve.

4 DEFINITIONS AND PRELIMINARIES

4.1 System model
The system model of BDPA, as shown in Fig. 4, involves
four entities: a PKG, a user, a CS, and a blockchain network.

• PKG: The PKG is governed by a trusted authority,
which initializes the system parameters and gener-
ates private key for the user based its identity.

• User: The user is the data owner with limited storage
and computation resources which uploads local data
to the CS.

• CS: The CS is managed by a cloud service provider,
and provides users with cloud storage services. It
usually has not only a large amount of storage space,
but also powerful computational capabilities.

• Blockchain: The blockchain is a transparent, im-
mutable and distributed ledger maintained by some
permissioned nodes1. After the user’s auditing re-
quests have been uploaded to the blockchain, these
nodes can cooperate to generate the challenge mes-
sage and verify the proof information. The hash
value of log files is logged in the blockchain.

BDPA is to utilize the decentralized blockchain to verify
the integrity of outsourced data on the cloud server. Here,

1. The permissioned nodes include some auditors and servers with
enough computation power. They still might be dishonest. Note that
permissioned nodes in the blockchain network should be authorized
for joining but will be excluded once behave maliciously.
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we briefly describe the relationships among the entities in
the system model. The user splits the file into many blocks
and generates a tag for each block. Then the user submit its
auditing task to the smart contract. The blockchain gener-
ates a random value based on the idea of DAO and chooses
a random node as the verifier. The chosen blockchain node
chooses a subset of all data blocks as a challenge message.
The CS generates the proof based on the challenge message.
The chosen node in the blockchain verifies the validity of
the proof. The user can also check the behaviour of the
blockchain node.

Compared with the system model of existing public
auditing schemes [20], [21], we replace a trusted and cen-
tralized TPA with the decentralized blockchain network to
generate random tuples and compute bilinear pairings. The
proposed BDPA is formally defined as follows.

Definition 1. The BDPA consists of seven algorithms: Setup,
KeyGen, Store, ChallGen, ProofGen, Audit, and CheckLog.

• Setup. This algorithm establishes necessary parame-
ters for the system.

• KeyGen. This algorithm generates a private key for
each authorized user.

• Store. This algorithm splits the user’s file into blocks
and generates a set of authentication tags which
correspond to those data blocks generated by the
user.

• ChallGen. This algorithm enables the nodes in the
blockchain network to generate random challenge
messages for checking data integrity.

• ProofGen. This algorithm enables the cloud server
to generate proof information which proves the data
integrity of the outsourced file.

• Audit. This algorithm enables the chosen node with
enough computation power in blockchain network
to verify the proof information locally.

• CheckLog. This algorithm checks the validity and
correctness of the log file in blockchain for the user.

4.2 Threat model

In the system, the PKG and the user is fully trusted and will
not launch any attack. This is the only centralized entity
in BDPA. Moreover, we assume that no external adversary
can truncate or tamper the communications among various
entities. Since we eliminate the centralized TPA in our
construction, we only consider threats from the malicious
cloud server and the untrusted blockchain.

Malicious cloud server. The cloud server may hide data
loss to maintain a good reputation by forging valid proof
information. Moreover, it may delete data that the user has
never accessed to save storage space.

Malicious blockchain nodes. We follow the existing
threat model of blockchain [36] with the integration of the
adversary definition in [21]. The nodes in the blockchain
may become two types of adversaries:

1) Type I adversary AI: It is a participant node and can
submit specially constructed values when generating chal-
lenge messages. It cannot modify other participants’ com-
mitments and does not have enough computation power to
manipulate newly generated blocks.

2) Type II adversaryAII: It is the malicious miner respon-
sible for generating new blocks in the blockchain and does
not participate in the procedures of generating challenges.
It can throw newly mined blocks or create a fork2 to modify
an unpleasant block to generate biased blocks, but it cannot
manipulate over 51% computing power in practice.

4.3 Design goals
In this paper, we target the secure public integrity auditing
scheme for cloud storage systems against tempting and
centralized TPA. We need to construct an unbiased and
unpredictable challenge message based on the idea of DAO.
Existing blockchain-based public auditing schemes cannot
resist the tempting auditor who can collude with the CS
and incentivize the malicious miners to generate biased
challenge messages.

In our BDPA, there are no centralized auditor but we
introduce a untrusted blockchain network. Therefore, the
unbiased construction of challenge information is crucial
and essential in our scheme. To ensure efficient data in-
tegrity auditing for outsourced data under the aforemen-
tioned system model and threat model, the proposed BDPA
aims to simultaneously achieve the following security and
utility goals:

• Security. The CS must store the user’s data correctly
when it passes verification. The adversaries in the
untrusted blockchain cannot deceive the user by
forging auditing records.

• Efficiency. The public auditing is light weight, in
other words, the integrated decentralized scheme
should be performed with acceptable communica-
tion and computation overhead.

• Availability. The public auditing service is robust
and available for users. Even if some nodes in the
blockchain are compromised, our BDPA can still
work normally.

• Scalability. The proposed scheme is scalable and can
integrate with existing auditing schemes easily.

4.4 Bilinear maps
Let G1 be an additive cyclic group and G2 be a multiplica-
tive cyclic group with the same prime order p. Let P be a
generator of G1. A bilinear map e : G1 × G1arrowG2 has
the following three properties:

• Bilinearity: ∀x, y ∈ Z∗p and Q,R ∈ G1, we have
e(xQ, yR) = e(Q,R)xy .

• Non-degeneracy: e(P, P ) 6= 1.
• Computability: there exists an efficient algorithm to

compute e(Q,R) for any input Q and R.

Discrete Logarithm (DL) Problem: Given G1 with a
generator P , for any Q = xP ∈ G1; compute x ∈ Zp.

Computation Diffe-Hellman (CDH) Problem: Given
G1 with a generator P , for , and given xP and yP with
unknown x, y ∈ Z∗p; compute xyP .

2. Note that the value of any specific block can be changed via
forking: in blockchain protocols, consensus does not go to the version
of a block that arrived first, but to the version of the block that belongs
to the longest chain.
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4.5 Blockchain

A blockchain [24] is a one-way linear set of data units, in
which each data unit is called a block. Each block contains
a pointer PreBlockHash, a timestamp Time, and multiple
transactions TXs. The PreBlockHash field points to the pre-
vious block and chains the ledger chronologically. The Time
field records the time when the block was added to the
blockchain. A transaction generally represents the events
of transferring tokens from one participant to another. The
participants who verify transactions are called miners. All
of data blocks are linked in chronological order using a
cryptographic hash function which ensures immutability
of data [37]–[40]. In this way, the blockchain is inherently
verifiable, and those recorded transactions are resistant to
tampering.

Generally, a blockchain network is maintained by some
nodes according to a common consensus mechanism. The
blockchain technique can be generally classified into three
types: public blockchain, permissioned blockchain and pri-
vate blockchain. In a public blockchain, users or nodes
can conduct transactions without referring to a centralized
authority (i.e. anyone can join or quit from the generating of
new block at any time). Popular public blockchains include
Bitcoin and Ethereum which are PoW-based blockchain
types. In reality, they are quite energy intensive, and suffer
from heavy power consumption and 51% attack. In contrast,
permissioned and private blockchains are maintained by
some trusted and permissioned nodes.

Famous permissioned blockchain such as Hyperledger3

provides suitable verification of participants’ identity and
are suitable for enterprise-grade deployments. Actually,
permissioned blockchain is more appropriate for our pro-
posal, because permissioned nodes are more trustworthy
and can be utilized to initialize random tuples as chal-
lenge messages. Nevertheless, the permissioned blockchain
need cooperation between many cloud service providers,
which is currently not considered in the proposed BDPA.
Besides, the blockchain which utilizes proof-of-stake (PoS)
consensus mechanism such as Peercoin can also be used
in our construction. In a PoS-based blockchain, validators
are responsible for ordering transactions and creating new
blocks so that all nodes can agree on the state of the network.
A user’s stake is used as a way to incentivise good validator
behaviour. In a real-world situation, PoS provides better
security than PoW against 51% attack and seems to be the
future of blockchain technology.

In our implementation, we choose Ethereum4, a pop-
ular platform with outstanding performance, as our ex-
periment environment to illustrate the feasibility of BDPA,
while omiting users in the blockchain network because
of their limited storage and computation capabilities. The
Ethereum platform can provide the function of smart con-
tract and is suitable for BDPA’s implementation. Moreover,
the Ethereum blockchain is moving to PoS from PoW and
can provide stronger immunity to centralization in the
future. Note that our BDPA can also be constructed on a
permissioned blockchain.

3. https://www.hyperledger.org/
4. https://ethereum.org/en/

Smart contract

Transaction

From: 0x14c58...

To: (Empty)

Value: 10

data: 0x2f05d...(Bytecode)

Signature: 0x30f46...Bytecode

Transaction

From: 0x45a67...

To: 0x692a7...(Contract Address)
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data: function (parameters)

Signature: 0x904d0...

Contract Address:0x692a7...

Blockchain Network

Compile

Deploy

Execute

Invoke

1

2

Create and deploy 

a smart contract

Execute functions 

on a smart contract

Fig. 5. Smart contract overview

4.6 Smart contract

The concept of smart contracts was firstly introduced by
Nick Szabo [41]. He came to a conclusion that any decentral-
ized ledger can be used as self-executable contracts. These
digital contracts could be converted into codes and allowed
to be run on a blockchain.

Smart contract [42] is a computerized transaction pro-
tocol that executes the terms of a contract and is compiled
by a Turing complete language (e.g, Solidity) into a piece
of bytecode. As demonstrated in Fig. 5, after compilation,
a smart contract will be chained into the blockchain as a
transaction. The provided functions or application binary
interfaces (ABIs) in smart contracts can be triggered by
publishing a transaction or sending a message from other
contracts. Note that a smart contract is a special account,
which also owns its address. One can transfer tokens to a
smart contract or invoke functions of a smart contract. Since
the the function calls and other operations are recorded
in the blockchain, a smart contract is often treated as a
traceable and unmodifiable execuation environment.

4.7 DAO

A DAO is a decentralized autonomous organization that
is run through rules encoded as computer programs called
smart contracts. A DAO’s financial transaction records and
programmed rules are maintained on a blockchain.

Existing schemes [20]–[22] which utilize the blockchain
data as a random seed are not trustworthy because min-
ers with prior knowledge have the ability to manipulate
blockchain data, and thus can indirectly affect the random
number generator (RNG). If RNG is based on blockchain
data, it will give blockchain miners capacity to construct
random numbers in their favor. In order to solve the prob-
lem of generating random values in Ethereum, RANDAO5

has been proposed as an infrastructure for Ethereum. To be
more specific, it is a DAO that anyone can participate in, and
the random number is jointly generated by all participants
together.

In our BDPA, we explore the idea of RANDAO by
designing the basic processes which generate random tuples
and handle the verification process in the blockchain. The
participants should be permissioned and will be excluded
once behave maliciously.

5. https://github.com/randao/randao
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5 BDPA
In this section, we firstly describe our detailed construction
of BDPA which integrates with Xue et al.’s scheme, and we
also show how our smart contract works. Then we present
the security analysis for the auditing scheme and resistance
against untrusted blockchain. Finally, we show the remark
and give further discussion.

5.1 Construction of BDPA
In this section, we describe the detailed construction of
BDPA, which can integrate with the existing public audit-
ing schemes. Specifically, IBPA-BDPA denotes the scheme
which integrates the auditing procedures of IBPA and BDPA
framework. And CPVPA-BDPA denotes the scheme which
integrates the auditing procedures of CPVPA and BDPA
framework. Now we show the core idea of BDPA by con-
structing the IBPA-BDPA scheme.

As illustrated in Fig. 4, we use a decentralized blockchain
to replace a centralized TPA. Generally, we split the pro-
cedures into two phases: Setup phase and Audit phase. The
procedures of BDPA among various entities are similar to
the existing schemes except for the ChallGen, Audit and
CheckLog algorithm.

Setup Phase. This phase is essentially the same as
existing public auditing schemes. During this phase, the
PKG initializes the system by calling the Setup algorithm
and assigns secret keys to each user by calling the KeyGen
algorithm. Then the user can outsource data blocks and tags
to the CS by calling the TagGen algorithm.

Setup(1λ)→ (PK,MSK,Params). The PKG generates
two cyclic groups G1, G2 of same prime order p with P as a
generator of G1, and defines a bilinear map e : G1 × G1 →
G2. Then, it selects s ∈ Zp as the master secret key MSK
and computes the public key PK is Q = sP . It also defines
a set of hash functions including: H1, H2 : {0, 1}∗ → G1,
h : G1 → Zp and H : {0, 1}∗ → Zp. It also generates a
common state parameter w. The public parameter is set as:

Params = (G1,G2, e, p, P,H1, H2, H, h).

KeyGen(PK,MSK, ID) → (SKu, PKu). Given a user
identity ID, it hashes ID to two elements Pu,0 =
H1(ID, 0), Pu,1 = H1(ID, 1) and computes Qu,0 = sPu,0,
Qu,1 = sPu,1. The user’s secret key is SKu = {Qu,0, Qu,1},
and the public key is PKu = {ID, Pu,0, Pu,1}.

TagGen(Params, F, SKu)→ Settag . The user splits the
data file F into n blocks, F = m1||m2||· · · ||mn. For each
block mj , the user chooses a random r ∈ Zp and computes
R = rP . The user also selects a file name, and generates an
authentication tag (Sj , Tj) using Params and SKu:

(Sj , Tj) = (rH2(w||j) +H(name||j)Qu,0 +mjQu,1, R).

The set of all authentication tags {Sj , Tj}j∈[1,n] is
Settag = {(Sj , Tj)}j∈[1,n]. Then the user sends {F, Settag}
to the CS and deletes the data file F from the local storage.

Audit Phase. During this phase, the user submits an
auditing request to the blockchain. The blockchain generates
a challenge message by calling the ChallGen algorithm,
which is implemented in a smart contract. After receiving
the challenge message from the blockchain, the CS generates
the proof information by calling the ProofGen algorithm.

Phase 1. Commit

Smart Contract

Blockchain Network

Phase 2. Reveal

Smart Contract

Phase 3. GetRandom

Smart Contract

Blockchain NetworkBlockchain Network

Fig. 6. The phases of a campaign

The blockchain chooses a random node with enough com-
puting ability to verify the proof information by calling the
Audit algorithm. The user can verify the blockchain node’s
behavior by calling the CheckLog algorithm.

ChallGen(Params, endT ime) → C. After the user sub-
mits an auditing request to the blockchain, the smart con-
tract will launch some campaigns which ends at prede-
fined time endT ime to generate random challenge messages
C = {j, vj} among some permissioned participants.

As described in Fig. 6, each campaign generally has
three phases: Commit, Reveal and GetRandom. The time for
each phase can be specified by the user. The campaign is
implemented in the smart contract in the blockchain and can
be viewed as a source of secure and transparent execution
procedure.

• Commit Phase. Every participant submits the hash
of its secret value and a certain amount of deposit
as a guarantee of honesty. These participants gener-
ally have enough computing ability and can finish
bilinear computations.

• Reveal Phase. Every participant reveals its secret
value and the smart contract will check whether
the hash value of revealed secret is the same as the
submitted hash value during the Commit phase. If
a malicious participant fails to reveal its secret or
reveal different secret value in this phase, its deposit
will not refunded and it will be added to the blacklist
for generating challenge messages.

• GetRandom Phase. The smart contract will check the
secret numbers successfully collected and calculate
the random number from all participants’ secret val-
ues and return the deposits and bonus to honest
participants.

As shown in Algorithm 1, we realize the ChallGen al-
gorithm and other functions in blockchain using a single
smart contract. After the user send an auditing request to
the blockchain, the smart contract will call newTask to create
a task with id taskID, and launch some campaigns which
can be added to the Task. Then each campaign generates
a random value. Finally, the task will obtain many ran-
dom values from all campaigns. Note that in our current
construction, we create many campaigns for an auditing
task. This method can also be replaced by creating just
one campaign in the blockchain network. Then the smart
contract can choose a random node to verify the proof
information from all participants in this campaign. The
chosen permissioned node can generate challenge messages
based on the random value from this campaign and verify
the proof information generated by the cloud server.
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Algorithm 1 Smart Contract of ChallGen
Require: Function name, invoked parameters
Ensure: Setting up functions.
structure Campaign
% Define the structure of a campaign which generates a

random number.
bnum; commitBalkline; commitDeadline;

% the block numbers that specify the period
deposit; bountypot;

% the deposit and bonus
random; settled; commitNum; revealsNum;

% final result and status
consumers; participants; commitments;

structure Task
% Define the structure of an auditing request of a user.
taskId; fileName;n;numChallenges;

% the total number of data blocks and challenged blocks
auditor; campaigns; challenges; proof ;
deposit; bountypot; result;

function newTask (name, n, c, deposit)
% Invoked by a user who has an auditing request.
require(msg.sender ∈ PL);

%PL denotes permissioned nodes’ addresses.
taskID = tasks.length+ +;
task = tasks[taskID];
numTasks+ +;
task.taskId = taskID;
task.fileName = name;
task.n = n;
task.numChallenges = c;
task.deposit = deposit;
task.bountypot = msg.value;

function genChallenge (taskID)
task = tasks[taskID];
for i = 0→ task.campaigns.length do

campaignID = task.campaigns[i];
j = campaigns[campaignID].random%task.n;
vj = campaigns[campaignID].random;
task.challenges.push(Challenge(j, vj));

end for
function getRandom (campaignID)
Campaignstoragec = campaigns[campaignID];
if c.commitNum == c.revealsNum then

c.settled = true;
return c.random;

end if

ProofGen(Params,C) → D. After receiving the chal-
lenge message C from the blockchain, the CS chooses a
random number x ∈ Zp and computes four values based on
the data blocks, authentication tags and challenge messages
as defined in IBPA [20].

µ = x−1(
al∑

j=a1

mjvj + h(y)),

y = xPu,1,

(S, T ) = (
al∑

j=a1

vjSj ,
al∑

j=a1

vjTj).

Then the cloud server sends the proof information D =
{S, T, µ, y} to the chosen node in the blockchain network.

Audit(Params,D) → 0/1. The chosen node with
enough computation power audits the proof information D
by verifying a bilinear equation.

e1 = e(
al∑

j=a1

H2(w||j)vj , R),

e2 = e(
al∑

j=a1

H(name||j)vjPu,0 + (µy − h(y)Pu,1), Q),

e(S, P )=e1 · e2. (3)

This algorithm outputs an auditing result of either 0 or 1,
where 0 means reject and 1 means accept. Then the verifier
creates a log entry (taskID, endT ime,C, (S, T, µ, y), 0/1)
and stores the hash values of log entries in the blockchain.

CheckLog(Params, Flog) → 0/1. The user can check
the log information in the chosen blockchain verifier and
verify the correctness of auditing results. The user firstly
checks whether the challenge message C is the the same as
the values generated in the smart contract. Then the user
chooses a random subset B = {b1, b2, · · · bl′} from C and
computes SB =

∑b
l
′

j=b1
vjSj . Then the user verifies the

following equation.

e
′

1 = e(

b
l
′∑

j=b1

H2(w||j)vj , R),

e
′

2 = e(

b
l
′∑

j=b1

H(name||j)vjPu,0 + (µy − h(y)Pu,1), Q),

e(SB , P )=e
′

1 · e
′

2. (4)

This algorithm outputs the checking result as 0 or 1 for
the user, where 0 means reject and 1 means accept.

Correctness. The correctness of the auditing scheme in
BDPA depends on the correctness of equation (3) and (4).
The correctness proof is shown as follows:

e(S, P ) = e(
al∑

j=a1

vjSj , P )

= e(
al∑

j=a1

vj(rH2(w||j) +H(name||j)Qu,0 +mjQu,1), P )

= e1 · e(
al∑

j=a1

H(name||j)vjPu,0 +
al∑

j=a1

mjvjPu,1, Q)

= e1 · e(
al∑

j=a1

H(name||j)vjPu,0 + (µy − h(y)Pu,1), Q)

= e1 · e2.

Note that the concrete algorithms of BDPA including
Setup, KeyGen, TagGen, ProofGen can be adjusted according
to specific auditing schemes. The ChallGen algorithm is
designed based on the idea of DAO. The algorithm Audit
is called by the random chosen permissioned node in the
blockchain. And the CheckLog algorithm is called by the
user to audit the blockchain node’s behavior. If the result is
incorrect, the chosen node will be added to the blacklist and
be rejected in the following auditing procedure.
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5.2 Security analysis
In this section, we analyze the security of BDPA from the
following two aspects: 1) the auditing scheme’s storage cor-
rectness guarantee and 2) the resistance to type I adversary
AI and type II adversary AII defined in the blockchain.

Theorem 1. BDPA achieves the storage correctness guarantee,
that is, if the cloud server passes the auditing procedure, it must
guarantees the cloud data authenticity.

Proof. In reality, the storage correctness relies on the inte-
grated public auditing scheme. To prove the cloud data
integrity, we need to prove that the auditing scheme inte-
grated in our BDPA achieves the data authenticity defined
in [29]. Next, we firstly prove that a part of the proof
information µ cannot be forged in Game 1, and we prove
the part of signature {S, T, µ} cannot be forged in Game
2. Now we assume that the malicious cloud server could
forge data blocks and signatures, and also pass the auditing
verification. The details of these two games are illustrated
as follows.

Game 1. The malicious CS could forge a valid proof as
{S, T, µ∗, y}, where µ∗ = x−1·(

∑al
j=a1

m∗jvj+h(y)). Clearly,
there exists at least a data block such that ∆mj = m∗j−mj 6=
0. According to the auditing procedure, the following two
equation holds:

e(S, P ) = e1 · e(
al∑

j=a1

hjvjPu,0 + (µy − h(y)Pu,1), Q),

e(S, P ) = e1 · e(
al∑

j=a1

hjvjPu,0 + (µ∗y − h(y)Pu,1), Q),

where e1 = e(
∑al
j=a1

H2(w||j)vj , rP ) and we denote hj =
H(name||j). Here, we will show how the malicious CS
can solve the DL problem in Game 1 by constructing a
simulator.

In the Setup algorithm, the simulator sets Q = sP ∈ G1

as the public key and the instance of the DL problem. The
simulator operates the random oracles H1, H2, h and H ,
and stores lists of queries. Then, the simulator randomly
chooses α, β, b, η, d ∈ Zp, and sets the hash values as
hj = H(name||j) = η ∈ Zp, H2(w||j) = bP ∈ G1, Pu,0 =
H1(ID, 0) = αP ∈ G1 and Pu,1 = H1(ID, 1) = βP ∈ G1.
According to the verification equation (3) for the correct
proof information, we could have

e(S, P ) = e1 · e(
al∑

j=a1

hjvjPu,0 + (µy − h(y)Pu,1), Q)

= e1 · e(
al∑

j=a1

hjvjPu,0 +
al∑

j=a1

mjvjPu,1, sP )

= e(r
al∑

j=a1

H2(w||j)vj + s
al∑

j=a1

(hjvjPu,0 +mjvjPu,1), P ).

The simulator continues to interact with the malicious
CS. Finally, we could obtain that above equation also
holds for data block m∗j and the forged proof information
{S, T, µ∗, y}. Therefore, we could compute e(S − S, P ) =
e(s

∑al
j=a1

(m∗j −mj)vjPu,1, P ) = e(
∑al
j=a1

s∆mjvjβP, P ).
Since Q = sP , we have

∑al
j=a1

β∆mjvjQ = 0. As we
know, G1 is an additive cyclic group. ∀A,B ∈ G1, there

exists ξ ∈ Zp, such that B = ξA. Thus, each vjQ
could also be represented as vjQ = vjsP = xA + yB,
where x, y ∈ Zp. Obviously, the following equation holds:∑al
j=a1

β∆mj(xA + yB) = 0. Thus, we could solve the DL
problem by calculating:

B = −(
∑al
j=a1

∆mjx/
∑al
j=a1

∆mjy) ·A.

By our setting, we have ∆mj = m∗j −mj 6= 0, and the
random number y ∈ Zp is unkown for the malicious CS.
The denominator is 0 with a probability of 1/p. Therefore,
we could construct a simulator which can be utilized by the
the malicious cloud server to solve the DL problem with a
probability of 1−1/p. This probability is non-negligible and
can lead to a contradiction.

Game 2. The malicious CS could forge a valid aggre-
gate signature as {S∗, T ∗, µ∗, y}, which is different from
the expected proof information {S, T, µ, y}. Clearly, we
could have {S∗, T ∗} 6= {S, T}. In the auditing process,
the expected proof information satisfies the bilinear pairing
equation as follows:

e(S, P ) = e1 · e(
al∑

j=a1

hjvjPu,0 + (µy − h(y)Pu,1), Q)

= e(
al∑

j=a1

rH2(w||j)vj + s
al∑

j=a1

(hjvjPu,0 +mjvjPu,1), P ).

Here, we will show how the malicious CS can construct
a simulator to solve the CDH problem in Game 2, that is,
the simulator aims to compute sP

′
from P , sP and P

′
.

In the Setup algorithm, the simulator sets Q = sP ∈ G1

as the PKG’s public key, without awareness of the secret
value s. Then, the simulator can operate the random or-
acles H1, H2, h and H , and save lists of queries to re-
ply coincidentally. Next, the simulator randomly chooses
α, β, b, η, d ∈ Zp, and sets the hash values as H(name||j) =
η ∈ Zp, H2(w||j) = bP ∈ G1, Pu,0 = H1(ID, 0) = αP

′ ∈
G1 and Pu,1 = H1(ID, 1) = βP

′ ∈ G1. According to the
ProofGen algorithm, we could have T =

∑al
j=a1

vjTj =∑al
j=a1

rPvj . Therefore, we have

e(S, P ) = e(
al∑

j=a1

rbPvj + s
al∑

j=a1

(ηvjαP
′
+mjvjβP

′
), P )

= e(bT + s
al∑

j=a1

(ηvjαP
′
+mjvjβP

′
), P ).

The simulator continues to interact with the malicious
cloud server. Finally, the malicious CS successfully forges
the valid proof information {S∗, T ∗, µ∗, y} which is differ-
ent from the expected {S, T, µ, y}. The above equation also
holds for the forged proof information, we further have

e(S∗, P ) = e(bT ∗ + s
al∑

j=a1

(ηvjαP
′
+m∗jvjβP

′
), P ).
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Similarly, we could further calculate e(S∗ − S, P ) by
using the previous two equations. Thus, we could compute:

e(S∗ − S, P ) = e(b(T ∗ − T ) + s
al∑

j=a1

(m∗j −mj)vjβP
′
, P )

= e(b(T ∗ − T ) +
al∑

j=a1

s∆mjvjβP
′
, P ).

So we get S∗ − S = b(T ∗ − T ) +
∑al
j=a1

s∆mjvjβP
′
.

And we could reschedule this equation to solve the hardness
assumption of CDH problem. In particular, we could get:

S∗ − S + b(T − T ∗) = sP
′
β
∑al
j=a1

∆mjvj
sP

′
= (S∗ − S + b(T − T ∗)) · (β

∑al
j=a1

∆mjvj)
−1.

By our setting, we have ∆mj 6= 0, S∗ − S 6= 0 and
T ∗ − T 6= 0. Each random number β, vj ∈ Zp is unknown
for the malicious CS. Therefore, the denominator is 0 with
a probability of 1/p2. Thus, we could construct a simulator
which can be utilized by the the malicious cloud server to
solve the CDH problem with a probability of 1− 1/p2. This
probability is non-negligible and can lead to a contradiction.
This concludes the proof that BDPA achieves the storage cor-
rectness guarantee and can ensure the cloud data integrity.

Theorem 2. BDPA is able to thwart type I adversary AI and
type II adversary AII defined in the blockchain network.

Proof. As described in Section 4.2, adversary AI is the
participant node which can submit specially constructed
values when generating challenge messages. Note that AI

must submit and reveal its secret in corresponding phases
otherwise its deposit will not be refunded and it will be
excluded from other campaigns.

In our smart contract, the random tuples are generated
by all participants together. The idea is based on DAO. Each
user’s secret value can be used as the last commitment and
cannot be predicted by nodes in the blockchain. Therefore,
even if AI submits a carefully constructed secret value, the
resulting random value is still not predictable as long as
there exists at least one honest participant.

As described in Section 4.2, adversary AII is the mali-
cious blockchain miner which is responsible for generating
new blocks and do not participate in the procedures of
generating challenge messages. It can throw newly mined
blocks or create a fork to modify an unpleasant block to
generate biased blocks, but it cannot manipulate over 51%
computing power in practice.

Note that in our construction, we design a mechanism
based on the idea of DAO and do not use any block values
such as Nonce and BlockHash. Therefore, even if AII can
influence the generated block values, it does not have any
impact on the generation of challenge messages in the smart
contract. The security of auditing procedures relies on the
random challenge messages. Note that the behaviors of
all participants are traceable and unpredictable. Therefore,
in our framework, we can guarantee the randomness of
challenge message and ensure the security of the whole
framework.

TABLE 1
Notations for operations

Symbol Operation

HashG hash operation {0, 1}∗ → G1

ExpG group exponentiation operation on G1

MulG group multiplication operation on G1

PairG group pairing operation on G1

HashZp hash operation {0, 1}∗ → Zp

MulZp multiplication operation in Zp

AddZp addition operation in Zp

Cf computing a PRF f(·)
|x| the number of bits of x

5.3 Remark and further discussion
In our proposed BDPA, we show how to integrate our
framework with existing auditing schemes by modifying
some algorithms. The core difference between our BDPA
and those existing schemes is that we adapt the blockchain
to generate challenge messages and handle auditing in a
transparent and verifiable way. In addition, we posit the
potential of a permissioned blockchain combined with the
idea of DAO to mitigate the centralization and collusion
problems illustrated in Section 3.2.

The claimed decentralization is for the main procedures
regards of the auditor in the public auditing scheme, that
is, we replace the TPA with the decentralized blockchain
which executes the ChallGen and Audit algorithms. We have
the centralized PKG which only participates the Setup,
KeyGen algorithm. The PKG is the necessary entity in an
identity-based auditing scheme, which generates the sys-
tem parameters and users’ private keys. Note that in most
existing public auditing schemes [43]–[45], they all have
the trustworthy PKG or KGC which is an important and
necessary entity in the cryptographic scheme.

There is a potential threat in our BDPA because our
construction is based on RANDAO. The last participant to
reveal its secret already knows others’ revealed numbers
and has a degree of influence on the aggregated random
number. To be more specific, the last participant can calcu-
late the result with or without their number. If one number is
better for them than the other, it has incentive to exert minor
degree of manipulation. Howerver, this problem can be
mitigated by feeding the aforementioned random number
into a verifiable delay function (VDF). A VDF requires a
specified number of sequential steps to evaluate, yet pro-
duces a unique output that can be efficiently and publicly
verified. More details about VDF can be found in [46].

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of IBPA-BDPA
and CPVPA-BDPA which are integrated with two existing
auditing schemes IBPA [20] and CPVPA [21] in terms of
cryptographic part and blockchain part. All the notations
used in the following evaluation are defined in Table 1.

6.1 Implementation setting
In our experiment, there are two parts: cryptographic imple-
mentations which are conducted based on the existing pub-
lic auditing schemes, and blockchain implementation which
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TABLE 2
Testing platform information

Operating System Windows 10

CPU Intel Core i5-7300HQ CPU 2.50 GHz
Memory 8.00 GB RAM

Configuration

1. nodejs v10.16.3
2. npm v6.9.0
3. truffle v5.0.0
4. ganache v1.2.1

generates random tuples for challenge messages based on
the idea of RANDAO.

Crypotographic implementation. In the cryptographic ex-
periment, we implement the public auditing schemes of
BDPA in Java with JPBC6 library in version 2.0 and IntelliJ
IDEA platform. In the implementations, we choose a type A
pairing with a 160-bit prime p and the base field size is 512-
bit. To evaluate the practical performance, we integrate two
different auditing schemes into our framework and evaluate
the performance. The auditing methods we use are the same
as the original auditing schemes and thus the time cost of
auditing is the same as them.

Blockchain implementation. In the blockchain experiment,
we implement our proposed scheme with Solidity which
is a Javascript-like language designed for writing smart
contracts in Ethereum. As shown in Table 2, we utilize the
truffle suite to write smart contracts and choose Ganache to
simulate a private blockchain environment. Our implemen-
tation mainly considers core functions in RANDAO. And
we deploy the smart contract on our personal computer
which runs a private blockchain. Note that the private
Ethereum can avoid transaction fees and provide the same
accuracy as the public one.

After our design, the smart contract is published in the
private chain, we use Web3j in version 4.5.5 to evaluate the
functions. Our implementations allow a user to delegate
auditing requests and check log files in blockchain. Each
node in the blockchain is identified by an address with
the corresponding public/private key pair. The user can
submit its auditing requests to the blockchain network by
executing the functions in the smart contrat. We remark
that the verification of the proof information can also be
handled by the existing blockchain-based bilinear pairing
outsourcing systems such as [47].

6.2 Cryptographic performance evaluation

We show the computation costs on the server side of IBPA-
BDPA and CPVPA-BDPA in Table 3, where c denotes the to-
tal number of challenged data blocks. In our implementation
of IBPA-BDPA and CPVPA-BDPA, the algorithms for tag
generation and proof generation are the same with IBPA [20]
and CPVPA [21]. Therefore, the computation costs on the
user side (tag generation) and server side (proof generation)
are the same with original schemes [20], [21]. Since the
challenging messages in our construction are computed by a
smart contract in the Ethereum blockchain, this requires ad-
ditional computation costs. However, such additional costs

6. http://gas.dia.unisa.it/projects/jpbc/

TABLE 3
Computation costs on the cloud server side

Scheme Computation cost

IBPA-BDPA (2c+1) ·ExpG+2c ·MulG+(c+1) ·MulZp

+(c+ 1) ·AddZp +HashZp

CPVPA-BDPA c ·ExpG+ c ·MulG+ c ·MulZp + c ·AddZp

+2c · Cf

TABLE 4
Computation costs of proof verification

Scheme Computation cost

IBPA-BDPA 3 · PairG + (2c+ 3) · ExpG + (2c+ 1) ·MulG
+DivG + c ·HashG +(c+1) ·HashZp + c ·MulZp

CPVPA-BDPA 4·PairG+(3c+2)·ExpG+3c·MulG+(c+4)·HashG

+(2c+ 3) ·HashZp + 2c ·MulZp + 2c · Cf
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Fig. 7. The overall computation time versus the number of challenged
data blocks

ensure that availability of auditing service even when some
nodes fail, and also protects from tempting auditors.

We show a comparison of computation costs of proof
verification in Table 4, and show the overall computation
delay of IBPA-BDPA and CPVPA-BDPA which contains the
computation costs on the user side, the server side and
verification delay in Fig. 7. In BDPA, the transmition cost
between the cloud server and the blockchain is constant,
which is the size of the generated challenge messages and
the proof information.

6.3 Blockchain performance evaluation
We conduct the following experiment to show the feasibility
of our proposed BDPA. Firstly, we compile and deploy
the designed smart contract into our private chain and
get the contract’s address. Then, we test the functionality
of the ChallGen algorithm. Note that the random tuples
generated in the blockchain are not used directly as chal-
lenge messages due to the limitaions of representing group
elements. The chosen node to verify the proof information
can obtain the random value from the Ethereum, and then
generate challenge messages locally. For simplicity, we only
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TABLE 5
Time cost (in ms) of functions in smart contract

Time commit reveal getRandom genChallenge

Average 63.9 130.68 59.54 85.2
Min 53 103 50 76
Max 83 158 83 111

TABLE 6
Comparison in security and utility

Scheme Anti-collusion Avaliability Scalability

IBPA [20] N N N
CPVPA [21] N N N
BDPA Y Y Y

use predefined settings to represent the user’s auditing task.
We remark that our implementations can also be applied in
practice to different blockchain platforms.

In order to evaluate the efficiency of BDPA, we execute
1000 times to measure the approximate time cost of core
functions related to the ChallGen algorithm (i.e. commit,
reveal, getRandom and genChallenge). Note that getRan-
dom is a eth call function, which does not trigger a block-
generation event. The approximate time cost shown in Table
5 is acceptable in reality compared with the overall time
costs of an auditing task.

6.4 Security and utility comparison

As shown in Table 6, we compare the properties of BDPA
with IBPA [20] and CPVPA [21] in consideration of security
and feasibility. Since IBPA and CPVPA both have the central-
ized TPA, they are vulnerable to the single point of failure.
Moreover, they cannot resist tempting auditors because the
challenge information can be biased based on our previous
discussion in Section 3.2. In this paper, the proposed BDPA
is scalable, available, and has acceptable efficiency and
provides strong security with the decentralized architecture.

7 CONCLUSION AND FUTURE WORK

In the paper, we proposed a blockchain-based decentralized
public auditing scheme, called BDPA. We integrated two
different mechanisms to show that our scheme is secure,
feasible, available and scalable. In addition, we proved the
security of BDPA against malicious cloud server and un-
trusted blockchain nodes. Finally, we implemented each al-
gorithm in BDPA and analyzed its performance in compari-
son with the existing schemes. Through theoretical analysis
and simulation study, we showed that the BDPA scheme
has acceptable performance with scalability, availability and
better security against tempting auditors.

In regards to future work, we will further investigate
how to select node in blockchain to verify the proof infor-
mation. In addition, we will explore how to integrate some
existing blockchain-based bilinear outsourcing schemes to
handle the computation of TPA. Moreover, we will design
an efficient public auditing scheme and also investigate how
to remove the centralized PKG in our future work.
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