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Abstract—Leveraging emerging mobile edge computing and 5G networks, researchers proposed to offload the 3D rendering of

interactive applications (e.g. virtual reality and cloud gaming) onto GPU-based edge servers to reduce the user experienced latency.

A task offloading problem arises, that is where to offload rendering tasks such that each user will experience tolerable delay and

meanwhile the cost of used servers is minimized. The multi-dimensional resource sharing feature of rendering tasks makes the

problem challenging. We formulate the task offloading problem into a boolean linear programming. We propose a sharing-aware

offloading algorithm which decomposes the problem into two subproblems (user assignment and server packing) and solves them

alternately and iteratively. We compare our algorithm with the one without resource sharing in consideration, and the simulations

demonstrate that our method can effectively reduce cost as well as satisfy delay requirement.

Index Terms—Mobile edge computing, task offloading, delay sensitive, multi-dimensional resource sharing, remote rendering,

interactive applications

Ç

1 INTRODUCTION

EDGE computing emerges as localized clouds [1], [2]. The
telecom carriers are upgrading the infrastructures in

existing communication networks to mobile edge comput-
ing platforms [3]. There are access sites such as cellular
radio base stations, aggregation sites such as those which
house distributed antenna systems, and core sites such as
central offices. These sites are equipped with computation
and storage resources, cooling, power delivery systems etc.,
and are re-designed to house edge servers. Due to the

proximity to users, mobile edge computing can achieve low
response time.

Cloud-based interactive applications, such as virtual
reality and cloud gaming [4], leverage cloud resources to
process their computation-intensive workloads, so as to
remove powerful and expensive hardware from user devi-
ces and lead to lightweight clients. Pioneering commercial
applications include OnLive [5], GeForce Now [6], CloudXR
[7] etc. However, these interactive applications need high-
throughput and low-latency internet connections, which is
challenging for users due to the long distance from data cen-
ters. A promising solution to overcome this is leveraging
emerging mobile edge computing. More specifically, edge-
assisted interactive applications offload computation-inten-
sive 3D rendering onto GPU-based infrastructures in mobile
edge computing and stream edge-rendered visuals to end
users over 5G connections, as proposed in [8], [9], as illus-
trated in Fig. 1. As such, the proximity to end users can
greatly reduce latency.

Interactive application service providers lease computa-
tion resources from the edge computing platforms to off-
load rendering tasks. A task offloading problem arises, that is
where to offload rendering tasks such that every user’s
delay requirement is satisfied while the cost of used servers
is minimized. The cost can be either lease cost or energy
consumption. A naive way is to run a rendering task for
each user and assign the task to the closest edge node to the
user. This can satisfy delay requirement, but may be costly.
Because it ignores an important feature of rendering tasks:
multi-dimensional resource sharing.

Running a rendering task involves several types of
resources: storage, memory, GPU memory, CPU, GPU and
bandwidth. Apart from bandwidth, each type of resource
can be shared among the users serviced by a server. We
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take the example as shown in Fig. 2 to illustrate it. First, for an
application (a multi-player 3D chess game in our example),
the renderingmaterials (chessboard and pieces) are stored in
storage and can be shared among multiple instances. An
instance is an execution of the application, a chess game in
our example, where each side has two cooperating users.
Second, within an instance, some rendering materials are
loaded into memory (GPU memory as well) and thus those
memory can be shared among all the rendering tasks of the
instance. Third, some users may have the same view during
the whole process of playing and thus can share a common
rendering task run by CPU and GPU, such as user 1 and user
2 in our example. Leveraging this multi-dimensional
resource sharing feature, we can save resource consumption
by assigning an instance’s users together. However, existing
related works on the task offloading in edge computing have
not considered this, thus are sharing-oblivious. The main con-
tribution of this paper is to propose a sharing-aware method for the
multi-dimensional resource sharing task offloading problem.

Opposite to the greedy scheme mentioned above, another
naive scheme is to maximize possible resource sharing, that
is to run a common rendering task for all shared-view users
and putting all the tasks belonging to an instance together on

a server. However, this may not be able to ensure users’
delay requirements, because the users of an instance may
spread across the network. Thus, the biggest challenge in our
task offloading problem is how to find the best resource shar-
ing plan leading to the least cost while ensuring users’ delay
requirements.

We formulate the task offloading problem into a boolean
linear programming. It is NP-hard in general case. We pro-
pose a sharing-aware online offloading algorithm, which
alternately and iteratively solves two subproblems: user
assignment and server packing. The user assignment sub-
problem is to assign users towards edge sites, such that each
user will experience tolerable delay, andmeanwhile resource
sharing is maximized. We formulate the user assignment to
be the set partition problem. For each site, given a set of users
assigned to it, the server packing subproblem is to pack the
users into the smallest number of servers such that resource
capacity constraints are satisfied. It can be formulated into
themulti-dimensional bin packing problem.

However, resource sharing complicates the server pack-
ing subproblem. We may treat each user as an item, a group
of shared-view users as an item or all users in an instance as
an item, all with multi-dimensional resource demands.
These three ways, differing in granularity, result in different
packing schemes and cost. Thus, we have to find a level of
granularity from three candidates: individual user, shared-
view user group, and instance, such that packing cost is
minimized. We formulate the granularity decision problem
into a three-armed bandit problem, and solve it using a rein-
forcement learning algorithm.

In addition, we consider one-user-per-instance case par-
ticularly, where each instance includes one user only. This
corresponds to single-user applications, like single-player
games, which are very common. We propose a heuristic off-
line algorithm based on the transportation problem.We eval-
uate our algorithms in several scenarios and compare them
with a sharing-oblivious offloading algorithm. The simula-
tion results demonstrate that our algorithm can reduce cost
significantly.

The rest of this paper is organized as follows. Section 2
introduces the system architecture of edge-assisted interac-
tive applications and the motivation of the rendering task

Fig. 1. The system architecture of edge-assisted interactive applications.

Fig. 2. An illustration of multi-dimensional resource sharing. Eight users participate in two chess games (instances). The users 1-4 in one game and
the users 5-8 in another. The rendering tasks for those users are offloaded onto a server. Several types of resources are needed: bandwidth, CPU,
GPU, memory, GPU memory and storage. Each user needs a part of bandwidth. Other resources can be shared among multiple users. First, each
two users share a view and thus a common rendering task run by CPU and GPU. Second, each two rendering tasks share a common memory (GPU
memory as well) since they belong to an instance. Third, all instances share the rendering materials in storage.
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offloading problem. Section 3 presents the problem formu-
lation. Section 4 presents the sharing-aware online offload-
ing algorithm. Section 5 presents the algorithms for the one-
user-per-instance case. Section 6 presents simulations and
performance evaluations. Section 7 introduces the related
works. Section 9 concludes the paper.

2 MOTIVATION

In this section, we introduce the system architecture of
edge-assisted interactive applications, and identify the ren-
dering task offloading problem.

2.1 System Architecture

Edge 3D rendering plays an important role in emerging
interactive applications, such as AR/VR and video gaming.
As shown in Fig. 1, a system may consist of cloud servers,
edge servers and user devices. Cloud servers host the core
logic of an application; edge servers provide rendering and
encoding; user devices provide decoding and displaying.
An information loop forms among them. Cloud servers gen-
erate rendering commands (which manipulates geometric
objects to generate video scenes as discussed in [10]) and
transfer them to edge servers; edge servers produce video
frames and transfer them to user devices; user devices gen-
erate control commands (devices’ input signals), transfer
them backward to cloud servers and let the latter update
the application logic.

2.2 Problem & Motivation

An application instance has several users spreading across
the network. There are several edge sites, each housing a
number of servers. We are about to offload rendering tasks
onto some servers in some edge sites. Interactive applica-
tions are delay sensitive, thus we have to select offloading
edge sites carefully such that every user gets satisfied delay.
Besides, the servers in different sites may have distinctive
costs. Thus, our objective is to minimize the cost of used
servers. In the case of equal cost, we minimize the number
of used servers. A naive method is to run a rendering task
for each user and assign the task onto the least-cost site with
tolerable delay. It may be costly, because it ignores multi-
dimensional resource sharing of rendering tasks.

We take an example to illustrate the motivation of our
problem. As shown in Fig. 3a, an application instance has
four users which belong to two shared-view user groups.

Users u1 and u2 belong to one group; u3 and u4 belong to
another. Three edge sites fv1; v2; v3g contain four servers,
each of which has one unit of CPU and unlimited other
resources. In each site, the cost per server is 1, 2 and 3 respec-
tively. We represent the relationship between users and sites
as a bipartite graph, where if a user meets delay requirement
in a site, then there is an edge between them. As shown in
Fig. 3b, the naive method assigns each user onto the least
cost site. It uses 4 servers and the total cost is 7. Note that
although u1 and u3 are both assigned onto the site v1, they
need two units of CPU because they belong to two different
groups and cannot share a common rendering task. In con-
trast, as shown in Fig. 3c, the optimal solution takes 2 servers
and the total cost is only 5. Note that u1 and u2 are both
assigned onto the site v2, they share the same view and thus
a common rendering task, which needs one unit of CPU
only. Similarly for the users u3 and u4. Thus, resource sharing
can save resource consumption and also cost.

3 PROBLEM FORMULATION

In this section, we first analyze the network delay experi-
enced by a user. Then, we formulate the problem of assign-
ing rendering tasks onto edge servers as a boolean linear
programming.

3.1 Delay Analysis

The offloading location of a rendering task affects the delay
experienced by a user. As shown in Fig. 1, for an edge-
assisted interactive application, the round trip delay experi-
enced by a user consists of the upstream delay of transmit-
ting a control command and the downstream delay of
transmitting a rendering command and a rendered video
frame. The latter depends on the offloading location of the
rendering task associated with the user; while the former
does not. Thus, we consider the downstream delay in more
detail.

Suppose the rendering task for user u is offloaded onto
edge site v, then we analyze its downstream network delay,
denoted by tuv. Let r and f denote the average data size of a
rendering command and a video frame respectively. Let bv
and dv denote the downstream throughput and delay from
the cloud server to edge site v respectively. Then, we get the
delay for transmitting a rendering command is

r

bv
þ dv: (1)

Fig. 3. An example to motivate the optimal task offloading method. An application instance has four users. Users u1 and u2 belong to one group; u3
and u4 belong to another. Three edge sites fv1; v2; v3g contain four servers, each of which has one unit of CPU and unlimited other resources. The
number shown on each server icon is the associated cost. The gray edges denote feasible assignments from u to v (considering the delay constraint),
and the pink edges denote actual assignments. (a) illustrates the setting of sites and users; (b) illustrates a naive offloading scheme which assigns
each user to the least cost site with tolerable delay, and the cost is 7; (c) illustrates the optimal offloading scheme which considers resource sharing,
and the cost is 5. (c) is better than (b) because it uses fewer units of CPU, where resource sharing is fully exploited.
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Let bvu and dvu denote the downstream throughput and
delay from edge site v to user device u. Then, similarly we
get the delay for transmitting a video frame is

f

bvu
þ dvu: (2)

Adding both, we have

tuv ¼ r

bv
þ f

bvu
þ dv þ dvu: (3)

Thus, we have to carefully offload rendering tasks such that
every user gets a satisfied delay.

3.2 Task Offloading Problem

Given an application and a set of instances denoted by I,
each instance is an execution of the application program
and is participated by one or several users. On the other
hand, there are a set of edge servers denoted by S, which
are distributed in several edge sites denoted by V . We
assume all edge servers are homogeneous in terms of hard-
ware, but the cost of an edge server depends on the location
of its edge site. We are about to offload the rendering tasks
of the instances onto the edge servers, such that the total
cost is minimized. The following formulation can be easily
extended to the servers with heterogeneous hardware, and
our algorithms proposed later can be directly used to the
heterogeneous servers with various capacities.

We define the task assignment problem here. Given a set
of users U and a set of edge servers S, the problem is to
assign each user in U to an edge server in S, such that each
user’s network delay requirement is satisfied, the resource
consumption on each edge server is bounded by its capac-
ity, and the total cost of used edge servers is minimized. For
each user, a rendering task serving it will run on the
assigned server. And on a server, all the shared-view users
will share a rendering task.

Let boolean variable xuj denote whether server j hosts a
rendering task for user u. Each user has to be assigned onto
exactly one server, thus we haveX

j2S
xuj ¼ 1; 8u 2 U: (4)

As mentioned earlier, the network delay experienced by a
user depends on the offloading site of its task. Let tuv denote
the network delay experienced by user u when offloading
its task onto site v. For any server j in site v, we have tuj ¼
tuv. Then, we get the delay experienced by user u isP

j2S tujxuj. It should be bounded by a tolerated maximum
value, denoted by t. Thus, we haveX

j2S
tujxuj � t; 8u 2 U: (5)

Next we formulate resource constraints. We assume
every edge server has enough storage to host the applica-
tion. Otherwise, some server cannot host any rendering task
and are ignored. Let vector p ¼ ðpC; pG; pM; pGM; pBÞ denote
the capacity of each server for CPU, GPU, memory, GPU
memory, and bandwidth respectively. And for simplicity,
we assume that a rendering task demands one unit of every

type of resource. The multi-dimensional resource sharing
feature of rendering tasks complicates the formulation of
resource constraints, and thus we have to introduce auxil-
iary variables.

Suppose the users in U form several shared-view user
groups, denoted byK. To formulate the resource constraints
for CPU and GPU, we introduce boolean variable ykj denot-
ing whether server j hosts a rendering task for shared-view
user group k. Then, the number of tasks on server j becomesP

k2K ykj. This number may be less than the number of users
assigned to the server (i.e.,

P
u2U xuj) because of possible task

sharing. Let boolean variable wj denote whether server j is
opened. Then, we have capacity constraints:X

k2K
ykj � pCwj; 8j 2 S; (6)

X
k2K

ykj � pGwj; 8j 2 S: (7)

These constraints can be combined. Let pK denote the maxi-
mum number of tasks allowed by each server, that is

pK ¼ min
�
pC; pG

�
: (8)

We replace the above two constraints byX
k2K

ykj � pKwj; 8j 2 S: (9)

This constraint ensures that if wj is zero, all variables ykj are
zero.

To formulate the resource constraints for memory and
GPU memory, we introduce boolean variable zij denoting
whether server j hosts instance i 2 I. Then, we have the
capacity constraints:X

i2I
zij � pMwj; 8j 2 S; (10)

X
i2I

zij � pGMwj; 8j 2 S: (11)

Note that we sum over all instances since any two instances
have separate memory and GPU memory. These two con-
straints can also be combined. Let pI denote the maximum
number of instances allowed by each server, that is

pI ¼ min
�
pM; pGM

�
: (12)

Then, we replace the above two constraints byX
i2I

zij � pIwj; 8j 2 S: (13)

Different from the above resources which can be shared,
we assume bandwidth is not shared among users. Thus, we
have the bandwidth constraintX

u2U
xuj � pBwj; 8j 2 S: (14)

It is noted that the variables introduced above have some
relationships. First, xuj and ykj must meet constraints

xuj � ykðuÞ;j; 8u 2 U; j 2 S; (15)
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where kðuÞ denotes the shared-view user group towhich user
u belongs. This means xuj is one only if ykðuÞ;j is one. In other
words, the event server j hosts group kðuÞ is a necessary con-
dition of the event server j hosts user u. A similar relationship
exists between ykj and zij. We know if server j hosts group k,
then it must host the instance of this group. Let iðkÞ denote
the instancewhich includes group k, thenwe have

ykj � ziðkÞ;j; 8k 2 K; j 2 S: (16)

At last, the necessary condition zij � wj has been suggested
by (13).

Our objective is to minimize the total cost which the
application provider will pay to an edge computing service
provider. Let cv denote the cost per server in site v, then we
have cj ¼ cv, for any server j in site v. Our objective is to
minimize

P
j2S cjwj. Thus, the problem is formulated into a

boolean linear programming as follows,

min
X
j2S

cjwj

s.t.
X
j2S

xuj ¼ 1; 8u 2 UX
j2S

tujxuj � t; 8u 2 UX
u2U

xuj � pBwj; 8j 2 SX
k2K

ykj � pKwj; 8j 2 SX
i2I

zij � pIwj; 8j 2 S

xuj � ykðuÞ;j; 8u 2 U; j 2 S

ykj � ziðkÞ;j; 8k 2 K; j 2 S

xuj 2 f0; 1g 8u 2 U; j 2 S

ykj 2 f0; 1g 8k 2 K; j 2 S

zij 2 f0; 1g 8i 2 I; j 2 S

wj 2 f0; 1g 8j 2 S

(17)

4 SHARING-AWARE OFFLOADING ALGORITHM

Application instances arrive sequentially, thus we propose
a sharing-aware online offloading algorithm to solve the

problem (17). In other words, our algorithm deals with
instances in the order of their arrivals.

The essence of our algorithm is to decompose the prob-
lem into two subproblems: user assignment and server
packing. Our heuristic algorithm solves these two subpro-
blems alternately and iteratively. The user assignment prob-
lem is to assign the users to the edge sites such that each
user can receive satisfied delay at the assigned site and
resource sharing is maximized. After user assignment, we
define a server packing problem for each site. It is to pack
the users having been assigned to the given site into a set of
servers such that resource capacity constraints are satisfied
and the number of used servers is minimized.

However, an issue arises here. In this decomposition, we
do not consider the number of servers allowed in each site
in the user assignment. Thus, a site may not be able to
accommodate all the users assigned to it. In other words,
the required number of servers to pack those users may
exceed the maximum value allowed. In this situation, some
instances will be reassigned later. In following, we formu-
late the subproblems and introduce our algorithm.

4.1 User Assignment Problem & Algorithm

The user assignment problem is to assign the users to the
edge sites such that each user receives tolerable delay and
resource sharing is maximized. Eventually, the given set of
users are divided into disjoint subsets, each being assigned
to a site. Different divisions lead to different resource con-
sumption, thus different costs. To find the best division is a
set partition problem.

We take the example in Fig. 4 to illustrate it. Given a set
of 4 edge sites (illustrated by squares) and a set of 8 users
(illustrated by circles). The users belong to an instance, but
2 shared-view user groups, which are differentiated by solid
and empty circles. We represent the relationship between
users and sites as a bipartite graph, that is if a user meets
delay requirement in a site, then there is an edge between
them. Each site thus has a set of users connecting to it,
denoted by Rv for site v. For example in Fig. 4a, R3 ¼
fu2; u3; u4; u7g. The users assigned onto the site v must sat-
isfy delay requirement, thus must be a subset of Rv. More-
over, each user must be assigned onto exactly one site.
Thus, the sets of users assigned to each site must be pair-
wise disjoint, and the union of them equals to the whole set

Fig. 4. The bipartite graph includes a set of four sites (squares) and a set of eight users (circles). Solid and empty circles differentiate two shared-view
user groups. The gray edges denote feasible assignments from a user to a site (considering the delay constraint), and the pink edges denote actual
assignments. (a) illustrates the set of users satisfying delay requirements in each site, that is Rv; (b) illustrates an assignment scheme
ffu1g; ;; fu2; u3; u4g; fu5; u6; u7; u8gg; (c) illustrates another assignment scheme ffu1; u3g; fu2; u5; u6g; fu4; u7g; fu8gg.
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of users. In other words, the result of user assignment forms a
set partition. For example, the user assignment scheme
ffu1g; ;; fu2; u3; u4g; fu5; u6; u7; u8gg in Fig. 4b is a set par-
tition. The user assignment scheme ffu1; u3g; fu2; u5; u6g;
fu4; u7g; fu8gg in Fig. 4c is another set partition. Both assign-
ment schemes are valid, but they may lead to different off-
loading costs. The assignment scheme in Fig. 4b needs 3
rendering tasks, each running in sites v1, v3 and v4 respec-
tively, because in the site v3 the users u2, u3 and u4 share a
view and thus a common rendering task. It is similar for the
users assigned to site v4. In contrast, the assignment scheme
in Fig. 4c needs 1, 2, 2 and 1 rendering tasks in each site, 6 in
total.More tasks lead to higher cost.

To tackle this problem, we first give a formal definition,
and then present a heuristic algorithm.

4.1.1 Formal Definition

Let U denote a set of users for an instance, which differenti-
ates the notation U used in the previous section denoting the
set of users of all instances. GivenU and a set of edge sites V ,
the user assignment problem is to divide U into a partition.
A partition is an indexed family of subsets of U with index
set V , denoted by fUv : v 2 V g, which satisfies two con-
straints: 1) the union of those subsets equals toU, that is[

v2V
Uv ¼ U; (18)

2) those subsets are pair-wise disjoint, that is

Uv1 \Uv2 ¼ ;; 8v1; v2 2 V; v1 6¼ v2: (19)

Partition part Uv corresponds to the users assigned to site v.
Partitioning ensures that each user is assigned to exact one
edge site.

The user assignment has to ensure that every user gets
satisfied delay at the assigned site. Let Rv denote all the
users in U satisfying delay requirement in site v, then we
have

Rv ¼ fu 2 U j tuv � tg: (20)

Thus, partition part Uv for edge site vmust satisfy

Uv � Rv: (21)

In order to bring this constraint into the set partition prob-
lem formulation, we introduce a tuple hv;Ai denoting site v
and a feasible set on this site, that is A � Rv. Then, we have
a family of candidate tuples

A ¼ fhv;Ai : v 2 V;A � Rvg: (22)

Thus, our problem becomes given U and A, to select a sub-
set of A such that it forms a partition of U, which means the
second elements of our selected tuples satisfy constraints
(18) and (19).

We can get many partitions of U from A. However, dif-
ferent partitions lead to different kinds of resource sharing
and thus different resource (memory and processor) con-
sumption. For example, considering a partition where each
user is assigned to different edge sites, then there is no
resource sharing and the resource consumption is high. In

contrast, considering another partition where all users are
assigned to the same edge site, then resource can be shared
if they are packed in the same server, so we say the possibil-
ity of sharing resource is high and it may lead to low mem-
ory consumption.

Given a family of candidate tuples A defined in (22), we
prefer to choose the set with large cardinality, since it brings
high possibility of resource savings. Besides, we prefer the
edge site with low cost. Combining them together, we
define the cost for tuple hv;Ai 2 A as

cðhv;AiÞ ¼ cvjAj�u: (23)

The lower the better. u is the weight of jAj, and balances the
server cost and set cardinality, which affects the extent of
resource sharing.

Thus, we define the user assignment (UA) problem for an
instance as: given a set of users U of an instance, a family
of candidate tuples A defined in (22) and a cost function c :
A ! Rþ, find a minimum cost subset of A such that it
forms a partition of U. This is a set partition problem. This
formulation ensures that every user is assigned to exact
one edge site and it can get satisfied delay at that site. As
such, the first two constraints in (17) can be met.

4.1.2 Heuristic Algorithm

The set partition problem is NP-hard. It is inefficient to
directly solve it, because A is exponential size. We propose
an efficient heuristic algorithm to solve it, as shown in Algo-
rithm 1. Instead of choosing a partition from the exponen-
tial-size set A, we start with a subset of it

A0 ¼ fhv;Rvi : v 2 V g; (24)

which only has jV j elements in total. Our algorithm itera-
tively selects partition parts from A0. In each iteration, it
selects the tuple whose cost cðhv;AiÞ

jAj is the smallest (say
hv�; A�i) as a partition part (line 4-5). Next, to ensure that
the chosen partition parts are pair-wise disjoint, we update
set A0 by removing the users just assigned (i.e., A�) from
each element (line 6-7). Finally, we remove invalid ele-
ments hv; ;i from set A0 (line 8-9). The algorithm iterates
until the union of the chosen partition parts equals to U

(line 3).

Algorithm 1. User Assignment Algorithm (UA)

Input: U and V
Output: partition fUv : v 2 V g
1: A0 ¼ fhv;Rvi : v 2 V g
2: Uv  ;; 8v 2 V
3: while

S
v2VUv 6¼ U do

4: FromA0 find the tuple whose cost-effectiveness cðhv;AiÞ
jAj is the

smallest, say hv�; A�i
5: Uv�  A�

6: for hv;Ai 2 A0 do
7: A AnA�
8: if A ¼ ; then
9: Remove hv;Ai from A0

1002 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 03,2023 at 13:03:51 UTC from IEEE Xplore.  Restrictions apply. 



4.2 Server Packing Problem & Algorithm

Once the users have been assigned to the edge sites, we
address server packing. For each site, given a set of users
assigned to it, we pack them into the smallest number of
servers. As formulated in problem (17), each server has three
kinds of resource capacity constraints, which are the limita-
tions on the number of instances, shared-view user groups
and users respectively. Thus, the server packing can be for-
mulated into a three-dimensional bin packing problem.

However, resource sharing complicates the server pack-
ing, since collocating some users together may reduce
resource consumption. We can treat each user as an item
with resource demand h 1; 1; 1 i to pack in a bin with capacity
h pI; pK; pB i. Here each element in these tuples corresponds
to the required (or maximum) number of instances, tasks,
and users for an item (or bin) respectively. Alternatively, we
may collocate the users belonging to a shared-view user
group together and treat it as an item with resource demand
h 1; 1; nB i, where nB is the number of users collocated in this
group. Similarly, we may collocate the users in an instance
together and treat it as an item with resource demand
h 1; nK; nB i, where nK and nB are the number of tasks (i.e.,
user groups) and users collocated in this instance respec-
tively. Different levels of granularity may lead to different
costs. The coarse granularity (instance) maximizes resource
sharing, but may cause resource waste due to large item size.
In contrast, the fine granularity (user) does not maximize
resource sharing, but may use resourcemore sufficiently due
to small item size. We have to find the best level of granular-
ity such that packing cost is minimized.

From our simulations, we find that the best level of gran-
ularity depends on several factors, such as the server capac-
ity h pI; pK; pB i, the delay limit t, and whether the server
costs are equal over edge sites or not and so on. It is hard to
get a decision formula via an analytical model. Instead, we
propose to use reinforcement learning method to learn the
best granularity from experiences in any situation.

We formulate the granularity decision problem into a
three-armed bandit problem. Given three actions (levels of
granularity), at each step, the system chooses an action, off-
loads k instances successively, and does server packing
with this action. A number of servers will be opened to
pack those instances. The fewer the better. Thus, we define
the reward (denoted by R) for an action as the minus of the
number of newly opened servers (denoted by C), that is R ¼
�C. Our objective is to maximize the expected total reward
over a long term of action selections.

We solve this problem using a simple action-value
approach [11] as shown in Algorithm 2. Let QðaÞ denote the
estimated value function of action a. We use it to evaluate
the goodness of selecting each action.We getQðaÞ by finding
the steps of taking action a and calculating the average of the
obtained rewards in these steps. The initial values of QðaÞ
highly affects the convergence. We initializeQðaÞ by averag-
ing the received rewards of taking action a overm steps (line
1). LetNðaÞ denote the selected count of action a, and we ini-
tialize it to m (line 2). After initialization, at each step, we
select the actionwith the highest estimated valuewith proba-
bility of 1� � and select the action randomly with the proba-
bility of � (line 4). Then, we update the value function for the
chosen action by averaging the received rewards (line 5-7).

Algorithm 2. Granularity Decision Algorithm (GD)

1: QðaÞ  average reward over m steps; 8a
2: NðaÞ  m; 8a
3: loop forever

4: a0  argmaxQðaÞ with probability 1� �
a random action with probability �

�
5: R �the number of newly opened servers
6: Nða0Þ  Nða0Þ þ 1
7: Qða0Þ  Qða0Þ þ ½R�Qða0Þ�=Nða0Þ

In the above algorithm, the parameter � balances explora-
tion and exploitation. The parameterm affects the quality of
initialization and further influences the learning process.
The larger m is, the closer QðaÞ is to its true value. But large
m may defer convergence. In addition, the parameter k is
the number of instances to process in each step. It affects the
quality of reward. If it is too small, extremely as one, the
reward samples for every action are very similar or even
zero so that they cannot differentiate actions. On the other
hand, if it is too large, lots of instances are required for the
update of value functions and also slow down convergence.

With a level of granularity, we group the users into items
and pack them into the smallest number of servers such
that the three-dimensional resource capacity is satisfied.
The three-dimensional bin packing problem is NP-hard.
There are many approximation or heuristic algorithms to
approach it. We use the traditional first-fit algorithm. When
packing a new item, we scan the opened servers in order
and place the item in the first server that fits. If it does not
fit in any of the existing servers, we open a new one. To
determine whether an item fits a server, we have to evaluate
the resource capacity constraints (9), (13) and (14) with
resource sharing considered as listed in the formulation
(17). It is noted that our granularity decision algorithm
works with any bin packing algorithm.

We look at a special case of our problem, where there is
only one user group in each application instance. In this sit-
uation, user group and instance are one-to-one mapping.
The two variables in our formulation (17), ykj and zij,
become the same, thus the two corresponding capacity con-
straints degenerate to the following oneX

i2I
zij � minfpK; pIg wj; 8j 2 S: (25)

As a result, our server packing problem becomes the cardi-
nality constrained bin packing problem, which is still NP-
hard. Several approximation algorithms have been pro-
posed to solve it. For example, Babel et al. in [12] proposed
an approximation algorithm with an asymptotic worst-case
performance ratio of 2.

4.3 Online Offloading Algorithm

Next, we introduce our online offloading algorithm based
on the components introduced so far. Our algorithm off-
loads instances one by one in the order of their arrivals. For
each instance, we solve the user assignment problem first
and then solve the server packing problem for each site
later. However, a site may not be possible to accommodate
all the users assigned to it, as we do not consider the num-
ber of servers allowed in each site during user assignment.
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Thus, we do server packing for sites one by one in the non-
decreasing order of cost. The idea is to fill up the least cost
site first. In the case of a tie, the site with more servers takes
precedence in order to avoid overflow in server packing.

Algorithm 3 illustrates the sharing-aware online offload-
ing algorithm for any instance U. It proceeds as follows. We
sort the sites in the nondecreasing order of cost and will do
server packing iteratively in this order until all the users are
packed (line 1). If there is a tie, the site with more servers has
higher priority. In each iteration, we deal with the current
least cost site l. First, we run the user assignment (UA) algo-
rithm for the remaining usersU and the remaining edge sites
V 0, and get partition fUv : v 2 V 0g (line 4-5). Second, we get
the best granularity fromGD algorithm (line 6), and do server
packing using the first-fit algorithm until running out of serv-
ers (line 7). Third, we remove the packed users from U (line
8). Fourth, we try the next possible site until either all users
have been packed or all sites have been tried out (line 3).

After the algorithm terminates, if there are users
remained in U, then these users are unable to host due to
the scarcity of resources. Our system can admit the packed
users and reject the remaining ones. Alternately, the system
can reject the entire instance. This is determined by the
agreement between the edge service provider and the appli-
cation provider.

We analyze that our algorithm has polynomial complex-
ity given polynomial-time algorithms for the UA problem
and the SP problem. Given the number of sites nV, we get
the worst-case complexity of our algorithm is

OðnVlognVÞ þOðnV TUAÞ þOðnV TSPÞ; (26)

where TUA and TSP denote the time complexity of the UA
algorithm and the SP algorithm respectively. The first term
is for sorting the sites. The second term is for solving the
user assignment problems, nV at most. The third term is for
solving the server packing problems, nV at most. Our user
assignment algorithm has Oðn2

VÞ complexity. The first-fit
algorithm used for the SP problem has a constant time com-
plexity, since in each site the number of items to pack is
bounded by the number of users per instance, which is a
constant. It is noted that the granularity decision algorithm
also has Oð1Þ time complexity.

Algorithm3. Sharing-Aware Offloading Algorithm (SAO)

Input: U and V
Output: Assign each user in U to a server
1: Sort V in the nondecreasing order of cost
2: l 1
3: while U 6¼ ; and l � jV j do
4: V 0  fl; lþ 1; � � � ; jV jg
5: fUv : v 2 V 0g  UAðU; V 0Þ
6: Get a level of granularity fromGD
7: Pack Ul using the first-fit algorithm in the selected

granularity until running out of servers
8: Remove the packed users from U

9: l lþ 1

It is noted that we run a single granularity decision algo-
rithm for all sites in SAO. In this way, we collect the number
of newly opened servers from sites, sum up and get the

reward. In contrast, another way to implement is to run a
GD algorithm for each site. The latter has an advantage over
the former when sites have heterogeneous servers and thus
different choices of granularity. In our simulation later, we
use the first implementation due to the homogeneous
assumption.

The above sharing-aware offloading algorithm can han-
dle the heterogeneous servers with various capacities and
also dynamic instance arrivals and departures. Because in
the entire algorithm, we use server capacity information
only in the step of server packing (line 7), where the latest
remaining resource capacity is considered.

5 ONE-USER-PER-INSTANCE CASE

In this section, we look at a special case of our problem,
where there is only one user in each application instance.
This situation is also very common in practice. Note that in
this situation, only the rendering materials in storage can be
shared among users, not for memory and processor. We
will propose new methods to approach it. In this situation,
user, user group and instance are all one-to-one mapping.
The three variables in our formulation (17), xuj, ykj and zij,
become the same. Moreover, users are homogeneous so that
server packing is trivial. As such, we can reformulate the
problem in a simple way as follows,

P : min
X
v2V

cv

&P
u2U xuv

pU

’
s.t.

X
v2V

xuv ¼ 1; 8u 2 UX
v2V

tuvxuv � t; 8u 2 UX
u2U

xuv � pUm̂v; 8v 2 V

xuv 2 f0; 1g 8u 2 U; v 2 V:

(27)

We explain this formulation in detail. Parameter pU

denotes server capacity and equals minfpK; pI; pBg. It is an
integer. In other words, it represents the maximum number
of users allowed on each server. Our variable xuv denotes
whether assigning user u to site v. The objective still is tomin-

imize the cost of used servers. Here, the term
lP

u2U xuv

pU

m
is the

number of the servers consumed in site v, by rounding up the
ratio of the number of users assigned onto site v to the server
capacity. The first two constraints are similar to that in (17).
The third constraint ensures the site capacity is satisfied, that
is the number of users assigned to site v cannot exceed the
maximum number pUm̂v, where m̂v is the maximum number
of servers in site v.

5.1 Offline Algorithm

We propose an offline heuristic algorithm to solve the prob-
lem (27). We first relax the original objective function in (27)
and get the following approximation problem,

AP : min
X
v2V

cv

P
u2U xuv

pU

s.t. constraints in (27):

(28)
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Then, this problem can be equivalently transformed to a
classical transportation problemwhere the objective is to mini-
mize the cost of distributing a product from a set of sources
to a set of destinations. Here, sites are sources, users are
destinations, and the resource requirement of a user is a
product.

We transform the above problem (28) to a standard trans-
portation problem by removing its delay constraints. The
way is to define a new cost as below,

c0uv ¼
cv
pU

if u gets satisfied delay in site v

þ1 otherwise.

�
(29)

As such, the problem (28) is equivalently transformed to the
following transportation problem.

TP : min
X
v2V

X
u2U

c0uvxuv

s.t.
X
v2V

xuv ¼ 1; 8u 2 UX
u2U

xuv � pUm̂v; 8v 2 V

xuv 2 f0; 1g 8u 2 U; v 2 V:

(30)

If a feasible solution to the above problem has an infinite
objective value, then it implies that some user is assigned to
some site with unsatisfactory delay. Otherwise, the delay
constraint in the P problem is satisfied, and thus the solu-
tion is also feasible for the P problem. It is noted that in the
above problem the boolean constraints are unnecessary any
more, since the theory on linear programming have demon-
strated that if the values pUm̂v are integers (which is true in
practice), then the optimal solution produced by the sim-
plex algorithm also are integers [13]. There are exact solvers
for the transportation problem, such as transportation sim-
plex method, and some heuristics such as the northwest cor-
ner method and Vogel’s method [14].

Algorithm 4. Transportation-Based Offline Offloading
(TFO)

Input: U and V
Output: Assign each user in U to a site
1: Initializemv  m̂v; 8v 2 V
2: while TPðfmv; 8v 2 V gÞ is feasible and has a finite objective

value do
3: Solve TPðfmv; 8v 2 V gÞ and get a feasible solution
4: fxuv; 8u 2 U; v 2 V gwith a finite objective value

5: hv  
lP

u2U xuv

pU

m
; 8v 2 V

6: v�  argmaxv2V hv �
P

u2U xuv

pU

7: mv  hv; 8v 2 V
8: mv�  mv� � 1

We propose a transportation-based offline offloading
(TFO) algorithm as shown in Algorithm 4. It iteratively sol-
ves a series of the relaxed transportation problems (TP for
short) in (30) with different site capacities. We define the
capacity of a site as the maximum number of servers
allowed to use, denoted by mv and initialized as m̂v for site
v. Our algorithm iteratively shrinks the site capacities until
either the TP problem is infeasible or it does not have a

finite objective value (line 2). In each iteration, we first solve
the TP problem with the site capacity of mv, denoted by
TPðfmv; 8v 2 V gÞ, get a feasible solution which leads to a
finite objective value, denoted by fxuv; 8u 2 U; v 2 V g (line
3-4). According to the aforementioned discussion, the solu-
tion is also feasible to the P problem. Then, we find the site
with the largest spare server capacity (line 5-6), which is the
spare capacity of the server not fully filled, say v�. It equals

to hv �
P

u2U xuv

pU
, where hv is the number of servers used in

site v. Next, we update the capacity of each site to hv and
reduce the capacity of site v� by one (line 7-8).

5.2 Online Algorithm

For this special case, the proposed SAO algorithm degener-
ates to a simple one. It assigns each user to the least-cost site
with tolerable delay. Each instance has a single user, thus
the server packing algorithm in SAO degenerates to the
first-fit algorithm in the granularity of user.

6 PERFORMANCE EVALUATION

Our sharing-aware offloading algorithm (SAO) considers
resource sharing in offloading rendering tasks. We compare
it with an algorithm without resource sharing in consider-
ation, called sharing-oblivious offloading algorithm (SBO). It
is also an online algorithm, and solves the user assignment
subproblem and the server packing subproblem alternately
and iteratively as in our algorithm. But it uses different user
assignment algorithm and server packing algorithm. Specifi-
cally, for each instance, the SBO assigns each user to the least-
cost edge site with tolerable delay. In the case of a tie, the site
with the most servers is selected. Besides, the SBO imple-
ments server packing using the first-fit algorithm in the gran-
ularity of user. It is noted that in the first-fit algorithm to
determine whether an item fits a server, we have to evaluate
the resource capacity constraints (9), (13) and (14) with
resource sharing considered as listed in the formulation (17).

In addition, to demonstrate the advantage of our algo-
rithm, we also compare it with packing in the granularity of
user (SAO-U), user group (SAO-G), and instance (SAO-I) in
the following evaluation. We use the cost reduction ratio
defined below to evaluate performance,

cost reduction ratio ¼ cost(SBOÞ � cost(SAOÞ
cost(SBOÞ : (31)

In our simulation, if not stated otherwise, we set the
parameters as presented in Table 1. We vary the number of

TABLE 1
Parameter Setting for the Simulation Environment

Parameter Value

The number of groups per instance 2
The number of users per group 4
The number of sites 50
The number of servers per site Uniff50; 100g
Server cost in each edge site (cv) Uniff1; 10g
h pI; pK; pB i h 5, 10, 20 i
Delay tuv (ms) Uniff10; 50g
Delay limit t (ms) 30

Uniffa; bg denotes discrete uniform distribution between a and b.
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instances to allocate. These instances start sequentially and
keep running until the end of the simulation. Each result is
averaged over 20 random simulations. We set the parame-
ters for our algorithm as follows: u is 1, � is 0 for full exploi-
tation, k is 200 and m is 1. As such, in the granularity
decision algorithm, the initialization of value functions
takes 3mk ¼ 600 instances. Moreover, in the GD algorithm,
we start initialization from the second step, because in the
first step packing is from scratch and this may lead to a
high-bias reward.

6.1 Reduction of Cost

We first show that our algorithm can reduce cost signifi-
cantly compared with the SBO algorithm. As illustrated in
Fig. 5, our algorithm (SAO) reduces cost by up to 52%. The
performance improvement comes from two aspects: 1) the
sharing-aware user assignment algorithm; 2) the granularity
decision algorithm. First, it is observed that SAO-U gets 50%
cost reduction compared to SBO. This suggests leveraging
resource sharing leads to cost reduction. Second, it is
observed that SAO is better than SAO-U by around two per-
centage points. This suggests our granularity decision algo-
rithm can further reduce cost.

As listed in the first line in Table 2, with 4000 instances,
over 20 random simulations, the granularity decision algo-
rithm converges to the level of instance in 16 cases and to
the level of group in 4 cases. This performance can be fur-
ther improved by starting with better initial value functions,
which can be estimated with large m and k, and learning
with more instances.

Next, we set equal server cost. As shown in Fig. 6, our
algorithm can reduce cost by up to 30%. In this situation,
SAO-I performs severely poorly. This is because in the case
of equal cost, jAj�u dominates the cost in the definition (23)
and as a result the users in an instance aggregate tightly.
Packing in the granularity of instance causes resource waste
due to large item size, although resource sharing is maxi-
mized. In contrast, SAO-U performs best, because small item

size leads to sufficient resource usage. SAO nearly learns the
best performance. As listed in the second line in Table 2,
with 4000 instances, over 20 random simulations, the GD
algorithm converges to the level of group in 4 cases and to
the level of user in 16 cases. It successfully avoids the level of
instance and nearly converges to the best level.

6.2 Effect of t

In this section, we evaluate how the delay limit affects per-
formance. We compare the cost under three values of t: 20
ms, 30 ms, and 40 ms. Since the SBO algorithm needs more
servers when t is 20 than that when t is 30, we set the num-
ber of servers per site for every delay limit according to a
uniform distribution between 100 and 150. As illustrated in
Fig. 7, for both SAO and SBO, as the delay limit increases,
the cost decreases. The reason is that with higher delay limit
more users meet delay requirement in each edge site, lead-
ing to more opportunities of resource sharing and cost
reduction.

Fig. 8 shows the cost reduction ratio when t is 40 ms. Dif-
ferent from the case when t is 30 ms, SAO-I performs poorly
now. With higher delay limit, more users meet delay require-
ment in each edge site. As a result, after the user assignment,
more users may aggregate together. Packing in the granular-
ity of instance causes resourcewaste due to large item size. As
shown in Fig. 8, our algorithm SAO learns the best perfor-
mance. As listed in the third line in Table 2, with 4000 instan-
ces, over 20 random simulations, the GD algorithm converges
to the level of group in all cases.

6.3 Effect of u

We evaluate the effect of u on the performance, which is the
weight of jAj (the cardinality of partition parts) relative to cv
(server cost) in the set cost definition (23). With large u, the

Fig. 5. The cost reduction ratio as the number of instances increases.

TABLE 2
The Convergence Results of the GDAlgorithm Under Various

Situations With 4000 Instances over 20 Simulations

Environment parameters Instance Group User

Default t, default server cost 16 4 0
Default t, equal server cost 0 4 16
t ¼ 40, default server cost 0 20 0

Fig. 6. The cost reduction ratio under equal server cost.

Fig. 7. The cost under various delay limit (t) values.
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user assignment algorithm prefers the partition parts which
contain more users. Fig. 9 verifies this argument. It shows
the empirical CDF for the size of partition parts resulted
from 2000 instances.

Fig. 10 shows the cost reduction ratio of SAO under vari-
ous u values. For large scale problems, as u increases from
zero to one, the performance becomes better, because the
weight of jAj improves user aggregation in sites and
resource sharing among them. However, as u further
increases, the performance becomes worse. This is because
with the heavy weight on jAj, users are assigned to some
edge site with high server cost. We set u to one for a good
balance between server cost and user aggregation.

6.4 Performance in Dynamic Environment

When an instance starts, our algorithm assigns resources for
it; when it finishes, the occupied resources will be released
and reallocated later. We evaluate the performance of our
algorithm in a dynamic environment, where 4000 instances
arrive and depart sequentially. The inter-arrival time fol-
lows an exponential distribution with the mean of 500 milli-
seconds. The running time of instances follows a uniform
distribution between 10 and 20 minutes. The other parame-
ters are set as in Table 1. Our result is averaged over 20 ran-
dom simulations. Fig. 12a shows the average number of
running instances in the system as the time goes. For each
round of simulation, the number of running instances
increases first as instances arrive sequentially; then roughly
speaking it reaches a maximum level just before the first
departure and maintains this level for a while; finally it
decreases after the last arrival. Fig. 12b shows the average
cost reduction ratio as the time goes. It is observed that our
algorithm (SAO) gets over 40% cost reduction compared to
SBO and learns the best granularity for server packing.

6.5 One-User-Per-Instance Case

For the one-user-per-instance case, we compare the transpor-
tation-based offline offloading algorithm (TFO) proposed in
Section 5 with the SBO algorithm. In TFO-GLPK, we use
GLPK [15] to solve the relaxed transportation problem (30)
and get its optimal solution in each iteration. In TFO-Vogel,
we use Vogel’s method [14] to solve the TP problem and get
its feasible solution in each iteration. In this simulation, we
use 15 edge sites, each containing 10 servers. The resource
capacity pU of a server is set to 20. As shown in Fig. 12a, both
algorithms perform similarly, and can reduce cost by up to
11% when there are 1000 instances to offload. In Fig. 12b, we
present the result of TFO-Vogel for large-scale problems
where there are 30 sites, the number of servers per site fol-
lows a uniform distribution between 10 and 20, and there are
400	4000 instances. The cost reduction ratio is between
4%	10%. In the above simulation, the TFO algorithm takes 2
to 6 iterations to converge. It demonstrates that our algo-
rithm is scalable for large scale problems.

Fig. 8. The cost reduction ratio under the delay limit of 40 ms.

Fig. 9. The empirical CDF for the size of partition parts under various u
values.

Fig. 10. The cost reduction ratio of SAO under various u values.

Fig. 11. The performance in a dynamic environment. (a) The number of
active instances as the time goes; (b) the cost reduction ratio compared
to SBO as the time evolves.
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7 RELATED WORK

Task offloading is an actively researched topic in edge com-
puting. We review the existing related works and classified
them into three categories in terms of optimization objec-
tives: minimizing task delay, minimizing system cost and
minimizing both.

First, some works aim to minimize the delay of tasks [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25]. Chen et al. in [16]
investigated a task offloading problem in mobile edge com-
puting to minimize task duration while saving the battery life
of user equipment. Chen et al. in [17] investigated a computa-
tion peer offloading problem in MEC-enabled small cell net-
works. It minimizes latency while considering limited energy
resources. Yu et al. in [18] designed a collaborative offloading
schemewith sharing computation results among tasks tomin-
imize the execution delay for mobile users. Dai et al. in [19]
investigated offloading tasks from vehicles to road side units.
They jointly optimized load balancing and offloading tomaxi-
mize system utility, which is a function of task processing
delay. Alameddine et al. in [20] investigated a dynamic task
offloading and scheduling problem which jointly optimizes
task offloading, resource allocation and task scheduling. It
maximizes the number of tasks meeting latency requirements.
Tang et al. in [21] investigated the task offloading problem
which determines the offloading decision for user devices
without knowing the uncertain load dynamics at edge nodes.
They proposed a deep reinforcement learning algorithm to
minimize the delay of a task and penalty if the task is dropped.
Meng et al. in [22] studied online deadline-aware task dis-
patching and scheduling in edge computing to maximize the
number of met deadlines. Wang et al. in [23] investigated the
problem to offload dependent tasks with the minimum

latency. They proposed a task offloading method based on
meta reinforcement learning, which adapts fast to new envi-
ronments with a small number of gradient updates and sam-
ples. Liu et al. in [24] proposed an adaptive task offloading
algorithm for time-critical tasks. Liu et al. in [25] investigated a
fog assisted cooperative service problem, which aims at mini-
mizing the overall service delay. Different from this category
of works, we consider the delay of tasks in constraints and
minimize the resource consumption of edge systems.

Second, some works aim to minimize the cost of edge
systems [26], [27], [28], [29], [30], [31]. Wang et al. in [26]
investigated the edge resource allocation problem which
minimizes total cost of operation, service quality, reconfigu-
ration and migration. They formulated it into a mixed non-
linear optimization problem and proposed an online
algorithm without knowing user mobility pattern. Wang
et al. in [27] proposed to minimize the energy consumption
of MEC servers by jointly designing offloading strategy and
sleep control scheme. Liu et al. in [28] investigated the task
offloading problem in vehicular edge computing networks,
where vehicles are edge nodes. It maximizes the total utility
including communication cost and computation cost. They
proposed deep reinforcement learning-based methods. Pu
et al. in [29] investigated the task offloading problem to min-
imize the energy consumption of vehicles serving crowd-
sensing applications. They proposed an Lyapunov-based
online task scheduling algorithm. Zhou et al. in [30] pro-
posed an online orchestration framework for cross-edge ser-
vice function chaining to minimize the holistic cost of edge
system. He et al. in [31] investigated the problem to allocate
app users to edge servers. It maximizes the number of app
users to be served with minimum overall system cost. They
proposed a game-theoretic approach and a decentralized
algorithm. Different from these works, our research work
consider the multi-dimensional resource sharing feature of
tasks and leverage it to reduce resource consumption.

Third, some works minimize both task delay and system
cost [32], [33]. Dink et al. in [32] investigated the task offloading
problem from a mobile device to multiple access points. It
minimizes both tasks’ execution delay and themobile device’s
energy consumption by jointly optimizing task allocation deci-
sion and the mobile device’s CPU frequency. Yan et al. in [33]
investigated offloading an application composed of a task call
graph from a mobile device to some access points. It jointly
optimizes offloading decision and resource allocation tomini-
mize energy-time cost. These works do not consider the
resource sharing among tasks and thus cannot achieve the
least cost for the rendering tasks of interactive applications.

8 FUTURE WORKS

During the running of rendering tasks, the network condi-
tions (i.e., delay, bandwidth) between users and edge serv-
ers may change, as a result the original allocation may not
be the optimal any more. In addition, when some instances
finish and their occupied resources are released, rearrang-
ing the active instances may consolidate resources and save
cost. However, the rearrangement involves the live migra-
tion of running tasks. Long migration time would result in
the interruption of the rendering service and poor user
experience. Thus, the migration time must be considered in

Fig. 12. The cost reduction ratio of the TFO algorithm for the one-user-
per-instance case. (a) for small-scale problems; (b) TFO-Vogel for large-
scale problems.
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the rearrangement of rendering tasks. This complicates the
offloading problem and is left for future work.

9 CONCLUSION

In this paper, we investigate a task offloading problem, that
is where (on which server in which edge site) to offload ren-
dering tasks such that each user will experience tolerable
delay and meanwhile the cost of used servers is minimized.
We leverage the multi-dimensional resource sharing feature
of rendering tasks and propose a sharing-aware online task
offloading algorithm so as to reduce cost. Our simulation
results demonstrate that the sharing-aware algorithm
reduces cost significantly compared to the sharing-oblivious
one. In addition, we also discuss the special case of one-
user-per-instance and propose a transportation-based off-
line offloading algorithm. Our simulation results demon-
strate that this iterative algorithm can reduce cost compared
to the greedy algorithm.
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