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Abstract— By providing rich context of lane information on
roads, lane-level maps play a vital role in intelligent transporta-
tion systems. Since Global Positioning Systems (GPS) have been
widely applied to vehicles, vehicle-based crowdsourcing offers
an economical way to the lane-level map building by collecting
and analyzing the GPS trajectories of vehicles. However, existing
works cannot directly extract lane-level road information from
raw and interleaved crowdsourcing trajectories, and moreover
they are time-consuming and inaccurate. In this article, we pro-
pose a lane-level map building scheme, which can directly
extract lane-level road information from raw crowdsourcing
GPS trajectories with both efficiency and accuracy improvement.
Consider the global similarity between trajectories, we design
an efficient trajectory segmentation and clustering algorithm
based on improved discrete Fréchet distance and entropy theory,
which can directly and accurately deal with the interleaved and
messy trajectories. To improve the efficiency, we employ the
Least Square Estimate (LSE) to constrain Gaussian Mixture
Model (GMM) and design an efficient and accurate lane-level
road information extraction algorithm. Comprehensive compar-
ative experiments and performance evaluation on a real-world
trajectory dataset show that the proposed scheme outperforms
the state-of-the-art works in terms of both efficiency and
accuracy.

Index Terms— Crowdsourcing, vehicle, lane-level map,
trajectory.
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I. INTRODUCTION

LANE-LEVEL maps have been widely applied in intelli-
gent transportation systems such as autonomous driving

and advanced driver-assistance systems [1]. Compared with
traditional road-level maps with limited and coarse-grained
information, lane-level maps are enhanced with detailed lane-
level road information including the number, exact locations
and geometry lines of lanes on a road. Such fine-grained lane-
level maps can offer drivers more accurate road information to
avoid fast lane changes and lane departure, which can enhance
driving safety, especially in low visibility conditions.

To make high-definition road maps, many digital map
makers (e.g., Apple and Baidu) usually rely on smart cars
equipped with position sensors (e.g., Global Navigation Satel-
lite Systems and Inertial Navigation Systems) and perception
sensors (e.g., laser scanners and cameras) to travel in the target
areas and capture the contexts of roads [2]. Although with
high accuracy, this approach is costly and time-consuming, and
cannot update the maps in real-time when the road conditions
change. Since GPS have been widely adopted in vehicles,
vehicle-based crowdsourcing is an efficient and economical
alternative to extract the lane-level road information from GPS
trajectories of vehicles. This approach has been successfully
adopted in the road-level map building such as Waze1 and
OpenStreetMap.2 However, most of the conventional vehicles
can only generate the low-precision GPS data with the accu-
racy of 10m-15m, and it is challenging to build the lane-level
maps over the raw low-precision GPS trajectories.

Considering the wide distribution of vehicles’ trajectories,
probability and statistics is a popular way to build the lane-
level maps over the low-precision GPS trajectories [3], [4].
However, existing related solutions need many iterations to
fit probabilistic models and are inapplicable to real-world
situations where tens of thousands roads and trajectories
need to be processed. Moreover, they cannot deal with the
sparse or intertwined GPS trajectories, which yet are very
common in practice. For example, when passing through the
urban canyons or underground passages, due to the low-end
GPS equipments, the vehicles may lose their locations or col-
lect the deviated GPS points. In this case, to maintain the
high accuracy, high-quality differential GPS (DGPS) data

1Waze takes live traffic information from users on the roads to give real-time
reports on road conditions. https://www.waze.com/.

2OpenStreetMap is created by worldwide voluntary mobile users using their
local knowledge and GPS trajectories. https://www.openstreetmap.org/.
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is required to extract prior knowledge beforehand [5]. But,
it is impossible to obtain such high-quality DGPS data from
conventional vehicles. Therefore, it is crucial to extract the
lane-level road information with high efficiency and accuracy
from the intertwined low-precision GPS trajectories in the
vehicle-based crowdsourcing.

In this article, we propose an efficient lane-level map build-
ing scheme via vehicle-based crowdsourcing, called eLane,
which can accurately extract the level-level road information
over the low-precision GPS trajectories. The eLane consists of
two phases: eLane-PRE for trajectory preprocessing including
segmentation and clustering, and eLane-EXT for lane-level
road information extraction. In eLane-PRE, eLane first splits
the raw GPS trajectories into segments based on the shape of
the real-world roads and the angle variations of trajectories,
ensuring that each trajectory segment is only on a single road.
Then, it measures the global similarities of trajectory segments
with the improved discrete Fréchet distance and classifies
the trajectory segments in proximity into a trajectory cluster.
In eLane-EXT , eLane first performs a polynomial curve fitting
on the trajectory clusters by LSE [6] to obtain the road features
such as centerline and boundaries. These features are then used
to optimize the constrained parameters of GMM [7], which
reduces the number of iterations of Expectation Maximiza-
tion (EM) [8]. Finally, combining the road features with the
extracted number of lanes by the Constrain Gaussian Mixture
Model (CGMM), eLane can build an accurate lane-level map.
The main contributions of this article can be summarized as
follows:

• We propose an efficient trajectory segmentation and clus-
tering algorithm based on global similarity and entropy
theory to deal with the interleaved and messy trajectories.

• We explore the constrained Gaussian mixture model to
design an efficient and accurate lane-level road informa-
tion extraction algorithm, which can greatly improve the
efficiency while achieving the high accuracy.

• We implement and evaluate our eLane on a real-
world trajectory dataset comprehensively. Detailed exper-
imental results show that our eLane outperforms the
state-of-the-art works in terms of both efficiency and
accuracy.

The rest of the paper is organized as follows. Related
works on trajectory clustering and lane-level map extraction
are reviewed in Section II. System model and necessary pre-
liminaries are introduced in Section III. In Section IV, we first
give the overview of eLane, and then separately describe the
detailed constructions of eLane-PRE and eLane-EXT . The
performance evaluation on the real-world dataset is shown in
Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Lane-level information extraction over crowdsourcing-
based GPS trajectories is essential to build high-definition
maps [3]–[5], [34], [35]. Next, we separately discuss existing
realted works on mobile crowdsourcing, trajectory clustering
and lane-level map extraction.

A. Mobile Crowdsourcing

In mobile crowdsourcing applications, a crowdsourcing
platform usually outsources location-based sensing tasks to
moving workers equipped with mobile devices, such as smart-
phones, wearable devices and vehicles. Upon accepting tasks,
workers move to specific locations and complete the tasks
according to requirements of tasks [42]. To balance worker
utilities and platform profit, Sarker et al. [43] proposed to
formulate task allocation as a multi-objective nonlinear pro-
gramming problem. To efficiently allocate tasks in dynamic
scenarios, where workers’ spatiotemporal information is
dynamic and cannot be known in advance, Tong et al. [44]
proposed a global online task allocation mechanism. To protect
the privacy during task allocation, Shu et al. [45] proposed
privacy-preserving task matching scheme while supporting
efficient worker revocation.

B. Trajectory Clustering
Due to the unpredictability of users’ driving patterns,

the GPS trajectories obtained via vehicle-based crowdsourcing
are usually complex and diverse [9]. In order to guarantee the
extraction accuracy, it is necessary to preprocess these messy
trajectories beforehand, i.e., segmentation and clustering.

There are several approaches to trajectory clustering, includ-
ing distance-based, identifier-based and map-based solutions.
In the distance-based solutions, Euclidean distance is a popular
metric to measure the similarity of trajectories [10]–[12] and
yet it can only evaluate the partial similarity. To capture
the global similarity, other metrics, e.g., perpendicular dis-
tance, parallel distance or angle distance, have also been
adopted [13]–[15]. However, these methods incur a huge
computation overhead, because all of three metrics need to
be calculated for each pair of trajectories. In the identifier-
based methods [16], [17], each participant needs to upload its
trajectory, associated with a road identifier indicating to which
road the trajectory belongs. This needs all the participants to
collaboratively negotiate the road identifiers beforehand and
automatically separate the trajectories by themselves. It incurs
extra additional communication and computation overhead on
the system and the participants. Map-based solutions have also
been extensively studied [18]–[20], which realize trajectory
clustering by matching a benchmark map with intermediate
representations of trajectories. Due to the complexity of road
maps, the high clustering accuracy cannot be well achieved.

The comparison of existing trajectory clustering solutions is
summarized in Table I. Due to the limitations described above,
they can not be directly applied to deal with messy trajectories
in the vehicle-based crowdsourcing.

C. Lane-Level Map Extraction
Existing lane-level map extraction solutions can be gener-

ally classified into three categories, according to the kind of
data that they deal with: LiDAR data [21]–[24], [46], [47],
vision data [25]–[32] and GPS trajectory data [3], [4],
[33]–[35].

In the LiDAR-based solutions, LiDAR data is usually
generated by 2D or 3D LiDAR scanners. Gwon et al. [21]
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TABLE I

COMPARISON OF EXISTING TRAJECTORY CLUSTERING SOLUTIONS

proposed to extract lane-level information from the piecewise
parametric polynomial set of 3D LiDAR data. LiDAR data
can be also directly segmented into lane-level maps by using
deep neural networks [22]. Lang et al. [24] proposed a
EM-based algorithm to detect parameters of parallel and 3D
lines from the 3D point cloud [23], and these line parameters
can be integrated to build the lane-level map. However, these
LiDAR-based solutions cannot be applied in a large scale,
because it is impossible to enable each conventional vehicle
to be equipped with a professional LiDAR scanner.

Vision-based solutions can be roughly classified into two
categories [25]: feature-based schemes [26], [27] and Deep
Learning (DL)-based schemes [28]–[32]. In [26], lane points
can be detected by aligning scanning lines along the time
axis and the Hough transform. Yoo et al. [27] proposed
to detect lanes over vanishing points from projected 2D
images. Modular Bayesian network [28] and fully convolu-
tional network [29], [30] were also introduced to infer ego-
lane positions from monocular camera images. Seo et al. [31]
combined Markov random fields with GMM to produce
lane-level highway maps from ortho-images. To extract lane
boundaries from satellite imagery, pixel-wise segmentation
and hypothesis linking were respectively applied to gener-
ate and connect line candidates [32]. However, vision-based
solutions are sensitive to image quality, which yet cannot
be well guaranteed by various vehicles. Moreover, they are
mostly supervised learning and require large-scale training
data which needs to be manually annotated for different
scenarios. Besides, they generally have high requirements on
computation power and memory space.

Since GPS sensors have been universally equipped by
vehicles, trajectory-based solutions are the most suitable to
be applied in a large scale. Non-parametric Kernel Density
Estimation (KDE) was utilized to analyze the probability
density distribution of trajectory points [4]. To mine lane-
level information from low-precision GPS trajectories, naïve
Bayesian classification was introduced in [33]. To improve
the extraction accuracy, Zhang et al. [34] proposed to calcu-
late the topological representation of road by cubic Hermite
spline and stepwise rarefy the topological representation to
obtain the accurate locations of lanes. GMM-EM was firstly
introduced to fit trajectory points by GMM and estimate
GMM parameters by EM [3]. Based on [3], Tang et al. [5]
designed a new regularization term to confirm the number
of lanes and [35] introduced a new constrained condition to
simplify the process of EM. However, since they don’t set
reasonable initial parameters of estimation and appropriately
restrict evaluation parameters, their computation costs are huge

Fig. 1. System model.

and a large number of trajectories must be prepared to achieve
the claimed accuracy.

III. MODEL AND PRELIMINARIES

A. System Model

As illustrated in Fig. 1, we consider a vehicle-based crowd-
sourcing system for lane-level map building, which consists of
vehicles, a crowdsourcing platform and requesters. Their roles
are defined as follows:

• Requesters. A requester specifies a geographical region to
collect the lane-level road information as a task, and pub-
lishes it onto the crowdsourcing platform. The requester
could be a map provider or a self-driving company.

• Crowdsourcing platform. Upon receiving a task from
a requester, the crowdsourcing platform recruits some
vehicles and lets the vehicles move in the target region,
record and upload their GPS trajectories. After collecting
all the vehicles’ GPS trajectories, the crowdsourcing
platform analyzes the trajectories, builds a lane-level road
map and sends the map to the requester.

• Vehicles. The vehicles recruited are the workers that
collect and upload their GPS trajectories of driving routes
to the crowdsourcing platform.

The focus of the paper is to efficiently build the lane-level road
map by analyzing the vehicles’ raw GPS trajectories. Note that
how to publish a task and how to recruit the vehicles are out
of scope of the paper.

B. Preliminaries

GPS trajectory. Each trajectory uploaded by a vehicle with
identity v can be represented as

T rv = {loc1, loc2, · · · , locnv },
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Fig. 2. The framework of eLane.

where nv is the number of collected locations in the trajectory
T rv . Each location loci∈[1,nv ] is a GPS sampled spatial-
temporal point, denoted as a tuple < xi , yi , ti > where xi and
yi represent the longitude and latitude of geographic location,
respectively, and ti is the collecting timestamp of location. And
note that all the locations in T rv are arranged in chronological
order, which determines the driving direction of the vehicle.

Discrete Fréchet distance. Fréchet distance is a popular
metric to measure the similarity between two curves, and
its discrete variation, called discrete Fréchet distance [36],
is widely adopted because of its good approximation to the
Fréchet distance and computational efficiency. Given two
discrete location sequences P = {p1, · · · , pi}, i ∈ [1, m]
and Q = {q1, · · · , q j }, j ∈ [1, n], a formal definition of the
discrete Fréchet distance �d F (P, Q) is set as follows:

�d F (P, Q)

= max{di |di

= min{d j
i |d j

i = d(pi , q j ), j ∈ [1, n]}, i ∈ [1, m]}, (1)

where d(pi , q j ) is the Euclidean distance between pi and q j .

IV. THE DESIGN OF eLane

A. Overview

As illustrated in Fig. 2, eLane is composed of two phases,
eLane-PRE for trajectory preprocessing including trajectory
segmentation and clustering, and eLane-EXT for lane-level
road information extraction, which are described as follows:

• eLane-PRE. In this phase, each raw GPS trajectory is
split into multiple segments based on its angle variation,
ensuring that each separated segment is on a relatively
straight road. Then, distance-based trajectory clustering
is performed on the segments of different trajectories,
to ensure that the segments of different trajectories on
the same road are put into a trajectory cluster.

• eLane-EXT. In this phase, road features such as centerline
and boundaries are first determined by LSE. Then these
road features can be used as the constraints of GMM and
the initialization parameters of EM. Finally, the lane-level
road information can be extracted with the EM algorithm
on the constrained GMM.

The notations used in our eLane are summarized in Table II.

TABLE II

NOTATIONS

Fig. 3. Raw vehicle trajectories.

B. eLane-PRE: Trajectory Segmentation and Clustering

Since the starting and ending points of vehicles are differ-
ent and meanwhile a trajectory usually covers several road
sections, the collected trajectories from different vehicles may
intertwine with each other, as shown in Fig. 3. To extract the
accurate lane-level road information, we need to preprocess the
raw trajectories beforehand, mainly including trajectory seg-
mentation and trajectory clustering. eLane-PRE first divides
the raw trajectories into multiple trajectory segments based on
the angular variations of trajectory vectors. Then the trajectory
segments are classified into different clusters based on the
improved discrete Fréchet distance.

1) Trajectory Segmentation: A spatial-temporal trajectory
usually reflects the moving tendency of a vehicle. Specifically,
any two adjacent locations loci and loci+1 can form a trajec-
tory vector vi , which reflects the moving direction at loci . The
angular variation ξi of any two adjacent trajectory vectors vi−1
and vi reflects the change of driving direction at loci . ξi at
loci can be calculated with its adjacent two locations loci−1
and loci+1: ⎧⎨⎨⎨⎨⎨⎩

vi−1 = (xi − xi−1, yi − yi−1)

vi = (xi+1 − xi , yi+1 − yi)

ξi = arccos
vi−1 · vi

|vi−1||vi | .
(2)

It is known that the angle of two adjacent trajectory vectors
in a trajectory will not change a lot unless they are at an
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Fig. 4. Trajectory segmentation.

intersection or changing lanes [37]. For example in Fig. 4,
in a trajectory piece Trv = {loc1, · · · , loc6}, the angle ξ2 at
loc2 changes a little, while the angle ξ4 at the inflection point
loc4 changes obviously. Based on these observations, we can
divide T rv into two segments T s1

v = {loc1, loc2, loc3, loc4}
and T s2

v = {loc4, loc5, loc6} by comparing each angle ξi with
a preset angle threshold Tangle. The value of Tangle is deter-
mined based on specific intersection design rules. For instance
in China, the minimum turning angle at an intersection is
about 60◦ [38], so Tangle can be set to 60◦. The details of
trajectory segmentation are described as Algorithm 1. Through
the trajectory segmentation, trajectories can be divided into
multiple trajectory segments to ensure that all locations of a
trajectory segment are on the same road section.

Algorithm 1 Trajectory Segmentation
Input:

Trajectories T R =< T r1, T r2, · · · , T rV >
Angle threshold Tangle

Output:
Trajectory segments T S =< T s1, · · · , T sL >

1: Initialize T S = �
2: for all T rv∈[1,V ] in T R do
3: i = 1
4: j = 2
5: for all loc j∈[2,nv−1] in T rv do
6: Compute ξ j as formula (2)
7: if ξ j > Tangle then
8: Add < loci , · · · , loc j > as a segment into T S
9: i = j

10: end if
11: j = j + 1
12: end for
13: end for

2) Trajectory Clustering: Although each trajectory is trans-
formed into a sequence of separated segments after trajectory
segmentation, the trajectory segments on different roads may
still be intertwined, which hinders the accurate extraction of
lane-level road information. In this regard, segment clustering
still needs to be conducted beforehand.

Discrete Fréchet distance is a popular metric to mea-
sure the spatial relationships of discrete points between
two curves, and it can be adopted to realize the trajectory

clustering by measuring the distance between any two tra-
jectory segments. For example, there are three trajectory
segments < T r1, T r2, T r3 > in Fig. 5(a), among which T r1
and T r2 are on the same road, and T r3 is on the other
road. The discrete Fréchet distance between T r1 and Tr2 is
�d F (Tr1, T r2) = d1, which is obviously less than the road
width. The discrete Fréchet distance between T r1 and Tr3 is
�d F (Tr1, T r3) = d2, which is significantly more than the
road width. Therefore, T r1 and T r2 can be classified into
the same cluster of trajectory segment, while T r3 will be
classified into another cluster. However, a trajectory on the
same road may be divided into different trajectory segments
due to the noise points inside, or the starting and ending
points of trajectory segments on the same road may be far
apart due to the different length of trajectory segments. These
cases will make the designed trajectory clustering ineffective.
As shown in Fig. 5(b), �d F (Tr4, T r5) is actually the distance
d3 between the ending points of two trajectory segments,
which is obviously more than the road width. This will classify
them into different clusters by mistake. Due to the clut-
tered characteristic of crowdsourcing trajectory data, this case
occurs frequently and will greatly affect the performance of
clustering. Therefore, we need to improve the discrete Fréchet
distance to make it more suitable for trajectory clustering in
crowdsourcing.

Improved discrete Fréchet distance. To solve the above
drawback, we improve discrete Fréchet distance by padding
the starting and ending points of trajectory segments before
distance computation. As shown in Fig. 5(c), eLane-PRE com-
pares the positional relationship of sequences < loc1, loc4 >
and < loc3, loc7 >, where (loc1, loc3) and (loc4, loc7) are the
starting points and ending points of T r4 and T r5, respectively.
Since the position of loc1 is before loc4, eLane-PRE adds loc1
as a new starting point of Tr5. Likewise, eLane-PRE adds loc7
as a new ending point of T r4. Through padding, T r4 and T r5
can be updated as:��T r4 = {loc1, loc2, loc3, loc7}�T r5 = {loc1, loc4, loc5, loc6, loc7}.
Then the discrete Fréchet distance between �Tr4 and �T r5 is
calculated as d4, which is less than the road width and thus
Tr4 and T r5 are classified into the same cluster. At this
point, given two trajectory segments P = {p1, · · · , pn1} and
Q = {q1, · · · , qn2}, the improved discrete Fréchet distance is
calculated as follows:⎧⎨⎨⎨⎩

�P = {omin(q1, p1), p1, · · · , pn1, omax(qn1, pn2)}�Q = {omin(p1, q1), q1, · · · , qn2, omax(pn1, qn2)}
��d F (P, Q) = �d F (�P, �Q),

(3)

where omin(pi , q j ) = pi if pi .x < q j .x , otherwise
omin(pi , q j ) = φ, and omax(pi , q j ) = pi if pi .x > q j .x ,
otherwise omax(a, b) = φ. The details of trajectory clustering
are described as Algorithm 2.

Heuristic search for Tdis . Since the value of threshold Tdis

is crucial to the performance of trajectory clustering, we design
a heuristic search based on entropy theory [39] to determine
its optimum value. The entropy is usually used to measure the
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Fig. 5. Trajectory clustering. (a) discrete Fréchet distance; (b) discrete Fréchet distance failure; (c) improved discrete Fréchet distance.

Algorithm 2 Trajectory Clustering
Input:

Trajectory segments T S =< T s1, · · · , T sL >
Distance threshold Tdis

Output:
Trajectory clusters T C =< T c1, · · · , T cm >

1: Initialize label(i) = 0, i ∈ [1, L], and m = 0
2: while ∃ label(i) = 0, i ∈ [1, L], do
3: m = m + 1
4: T c[m] = �
5: for all label(i) = 0, i ∈ [1, L] do
6: if � T s j ∈ T cm s.t. ��d F(T si , T s j ) > Tdis then
7: label(i) = m
8: Add T si to T cm

9: end if
10: end for
11: end while

uncertainty about a given probability distribution, and it can
be defined as:

H (X) =
n	

i=1

p(xi ) ∗ log2
1

p(xi)
. (4)

In a bad clustering case, the number of trajectories in different
trajectory clusters, |T ci |, tends to be uniform. That is, |T ci | =
1 for almost all trajectory clusters when Tdis is too small, and
the number of trajectory clusters m ≈ 1 when Tdis is too large.
In this case, the entropy H (X) will be large. In contrast, in a
good clustering case, |T ci | tends to be skewed and H (X)
becomes smaller. Based on the above observation, we can
obtain an optimal Tdis by minimizing the objective function
HT :

HT = H (X)√
m

=

n

i=1 p(xi) ∗ log2
1

p(xi)√
m

, (5)

where p(xi) = |T ci |
L

, L is the total number of trajectory seg-
ments and m is the total number of clusters. The optimal Tdis

can be efficiently obtained by simulated annealing [40], [48].

C. eLane-EXT: Lane-Level Road Information Extraction

In this phase, eLane-EXT first utilizes LSE to extract road
features (e.g., centerline and boundaries) from the trajectory
segment clusters. Then, these features can be used as the

Fig. 6. Trajectory fitting by GMM.

constraints of GMM and the initialization parameters of EM.
Finally, combining the features extracted by LSE with the
concrete parameters extracted by EM, eLane-EXT determines
the exact positions of each lane.

Extraction by GMM-EM. To fit the GPS trajectories across
the roads, GMM is widely adopted based on the common
assumption that the trajectories tend to cluster near the center
of each lane with some spread due to inaccuracy of GPS [3].
In the GMM fitting, two-dimensional GPS data is converted
into single-dimensional data by using an [rh, rw] rectangu-
lar window to sample the vertical sections of trajectories,
as shown in Fig. 6. Through the rectangular-based sampling,
the road is divided into multiple bins, where each bin is
denoted by bini . The probability density of bini can be
calculated by

p(bini) = #(bini)

N
, (6)

where #(bini) is the number of points in the bin bini , and N
is the number of points in the sampling area. At this point,
the GMM can be defined as follows:

p(bini) =
k	

j=1

ω j

exp

�
− (bini − μ j )

2

2σ 2
j

�
�

2πσ 2
j

. (7)

To determine the GMM, the EM algorithm is com-
monly adopted to figure out the unknown parame-
ter θk(ω j , μ j , σ j ) [3]. The basic idea is to estimate
θk{ω j , μ j , σ j }k for each j ∈ [1, k], and then select the k by
solving

k = min

�
− 1

Bn

Bn	
i=1

log p(bini | θk) + λR(D, θk)

�
, (8)
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Fig. 7. Curve fitting the road centerline.

where Bn is the number of bins. The first term in equation (8)
is the negative mean log-likelihood, which assesses how well
the model fits the observed data. In the second term, R(D, θk)
is a regularization term that penalizes complex models, and
λ > 0 is the regularization parameter [5].

Disadvantages. Since the generic GMM-EM method in
existing solutions [3], [5] don’t put any constraints on the para-
meters of θk by considering actual road conditions, parameter
estimation and optimization takes too many number of iter-
ations. This unconstrained GMM-EM approach causes huge
computational overhead, especially when estimating numerous
roads. Moreover, the initialization parameters (ω

(0)
j , μ

(0)
j , σ

(0)
j )

are regarded as fixed values, which does not conform to the
diverse road conditions in the real world and will also reduce
the extraction accuracy.

Extraction by constrained GMM-EM. In order to improve
efficiency, we design a constrained GMM-EM in eLane-EXT .
eLane-EXT contains two steps: road feature extraction and
lane-level road information extraction.

(1) Road feature extraction. In this step, the road center-
line is first extracted by fitting the trajectory clusters with LSE,
and then the road boundaries are obtained by the prediction
interval under appropriate confidence coefficient. As shown
in Fig. 7, for each location point loci =< xi , yi , ti >,
i ∈ [1, n] where n is the number of points in a trajectory
segment cluster, LSE provides an estimate 
yi to minimize the
following function [6]:

min
n	

i=1

(
yi − yi )
2. (9)

Through LSE, the estimated curve �centeri =< xi , 
yi > is
closest to the real centerline of road.

On the other hand, the two boundaries Bi and Bi of loci

in a trajectory segment cluster can be extracted by prediction
interval as

Bi = 
yi + tn−2(s)

�
1 + 1

n
+ (xi − x̄)2
n

j=1(x j − x̄)2 , (10)

Bi = 
yi − tn−2(s)

�
1 + 1

n
+ (xi − x̄)2
n

j=1(x j − x̄)2
, (11)

where x̄ is the mean, tn−2 is the multiplier associated with
sampling area size and confidence level, s is the standard error
of the estimate. Through the detailed experiments, we find that
when the confidence coefficient is set as 95%, the prediction

Fig. 8. Prediction interval and marking of road boundaries on Google map.

interval of the trajectory segment cluster can accurately iden-
tify the boundaries of roads. As shown in Fig. 8, the extracted
road boundaries are marked on the Google satellite map.

(2) Lane-level road information extraction. Some prior
knowledge about lane shapes in reality can be used to constrain
the GMM:

• The width of each lane in the same sampling area is
nearly the same in reality, then {μ j } can be assumed as
equally spaced. Based on this assumption, each μ j can
be constrained as

μ j = B + ( j − 1

2
)�μk, j ∈ [1, k], (12)

where B is the starting boundary of the sampling area
and it can be calculated by

B = Bin(
1

N

N	
i=1

Bi), (13)

where the function Bin() determines which bin the
boundary is located in, and N denotes the number of
points in the sampling area. The average of lower bounds
is set as the location of the starting boundary of the
sampling area. �μk is the distance between the centerline
of adjacent lanes, and it equals to the lane width. When
k is known, �μk can be calculated by

�μk = 1

k
[Bin(

1

N

N	
i=1

Bi ) − Bin(
1

N

N	
i=1

Bi )]. (14)

• The lanes of a road are usually of equal width, and the
spread of trajectories for each lane remains approximately
the same, then all the Gaussian components can be
assumed to share the same variance:

σ1 = · · · = σ j = · · · = σk = σ, j ∈ [1, k]. (15)

Based on the above two observations, we revise the GMM
and propose the Constrained GMM (CGMM) as

p(bini) =
k	

j=1

ω j

exp

⎧⎨⎨⎨⎩−
[bini − B − ( j − 1

2
)�μk]2

2σ 2

⎫⎨⎬⎨⎭
√

2πσ 2
.

(16)
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TABLE III

METHODOLOGIES OF STATE-OF-THE-ART WORKS

At this point, the model parameters to be estimated in EM are
reduced as {k, ω1, · · · , ωk, σ }, which will largely reduce the
number of iterations.

On the other hand, through the experiments in Section V-C,
the regularization term in formula (8) can be ignored. That is,
k can be determined by solving

k = max

�
1

Bn

Bn	
i=1

log p(bini | θk)

�
. (17)

In most cases, the above method can achieve the correct
result. However, due to the uncertain traffic flows in each
lane or the GPS inaccuracy, incorrect estimations on the num-
ber of lanes still exist occasionally. Based on this, we optimize
the results of the estimated number of lanes by comparing
< NlineAi−1 , NlineAi , NlineAi+1 >, where NlineAi is the
estimated number of lanes in the sampling area Ai . If there
exists the following case:�

NlineAi−1 = NlineAi+1

NlineAi �= NlineAi−1 ,
(18)

we can set NlineAi = NlineAi−1 . This holds based on
the real-world observation that the number of lanes cannot
frequently change in a short distance. Such optimization can
significantly increase the extraction accuracy of the number of
lanes.

V. PERFORMANCE EVALUATION

In this section, we first independently evaluate the perfor-
mance of two phases in eLane: eLane-PRE and eLane-EXT ,
and then measure the efficiency and accuracy of eLane-EXT
in comparison with the state-of-the-art lane-level map building
schemes: [3]–[5], [34], [35]. Their methodologies are briefly
summarized in Table III.

In the performance evaluation, we adopt a real-world dataset
obtained from [41], which contains about ten million GPS
coordinates collected by approximately 500 taxis over 30 days
in the San Francisco Bay Area, USA. Our eLane3 is imple-
mented by Matlab and all the experiments are conducted on
a PC with an Intel Core I7 CPU at 2.6 GHz and 16 GB

3https://github.com/jgshu/eLane

Fig. 9. Trajectory segment clusters when Tangle = 60◦ and Tdis = 20m,
and different colors means different clusters.

Fig. 10. Objective function HT as formula (5) and clustering metric Fc as
formula (19) under different clustering distance threshold Tdis .

RAM. In the experiments, Tangle is set as 60◦, Tdis is set
as 20m, the confidence coefficient is set as 95%, the iterative
convergence threshold is set as 10−4, and the length rh and
width rw of sampling area are respectively set as 5m and 50m.

A. eLane-PRE

In order to quantitatively evaluate the performance of eLane-
PRE and the determination of clustering distance threshold
Tdis , we design a metric Fc inspired by F1 − score as

Fc = 2 × precisionc × recallc

precisionc + recallc
, (19)

where precisionc = cvc

Mc
and recallc = cvc

Groundc
. Mc is

the number of extracted road clusters, Groundc is the actual
number of roads in the sub-region, and cvc is the number of
actual roads matched by extracted trajectory clusters.

To easily process the large dataset, we split it into multiple
sub-regions, as shown in Fig. 3. For each sub-region, we link
the raw GPS points of each vehicle in chronological order
as a trajectory. Then based on the prior knowledge of real-
world road conditions, we split the trajectory into multiple
trajectory segments based the minimum turning angle at an
intersection, i.e., Tangle = 60◦. Finally, we cluster the trajec-
tory segments based on the improved discrete Fréchet distance.
Fig. 9 shows the snapshot of trajectory segment clusters
in a sub-region, where lines with different colors represent
trajectory segment clusters on different roads. Fig. 10 shows
the variation of Fc and HT under different Tdis . We can see
the trend of HT is opposite to that of Fc, and the maximum
Fc and the minimum HT can be simultaneously achieved
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Fig. 11. Accuracy of road feature extraction by LSE under different
confidence coefficients.

when Tdis is an optimum value. That means, when Tdis is
less than the optimum, the trajectory segments on the same
road will be incorrectly classified into different trajectory
clusters, so the number of clusters m is larger than the
correct one and HT is larger than the minimum; when Tdis is
larger than the optimum, the trajectory segments on different
roads will be classified into the same trajectory cluster, so m
is smaller than the correct one and HT is larger than the
minimum.

B. eLane-EXT

1) Road Feature Extraction: We randomly select 10 tra-
jectory segment clusters from the dataset processed by
eLane-PRE, and then divide the trajectory clusters into two
parts according to the driving directions. To evaluate the
effectiveness of road feature extraction, we define a metric
called average accuracy

Acc = nnor

nnor + nout
× 100%, (20)

where nnor denotes the average number of points located
inside the road area, and nout denotes the average number of
points located outside the road area. Finally, we measure Acc
and nnor on the selected 10 clusters under different confidence
coefficients within [92%, 98%], as shown in Fig. 11. When
the confidence coefficient is within [92%, 95%], the prediction
interval is within the road boundaries and all points between
the prediction interval are inside the road area, and thus
Acc ≈ 100%. As the confidence coefficient increases, the road
width covered by the prediction interval gradually expands,
and Nnor also increases. But when the confidence coefficient
is greater than 95%, the prediction interval will exceed the
road width and outliers will appear. With the increasing
confidence coefficient in [95%, 98%], Acc decreases while
nnor tends to be stable. Therefore, we can accurately identify
the road boundaries with the prediction interval under the 95%
confidence coefficient.

2) Lane-Level Road Information Extraction: According to
the road construction standards in America, we set the max-
imum number of lanes as 6. The length rh and width rw

of sampling area are set as 5m and 50m, respectively, and
each sampling area is divided into 100 bins. The initialization
parameters θ

(0)
k {ω(0)

1 , · · · , ω
(0)
k , σ (0)} for each k are set as

following:

θ
(0)
k

⎧⎨⎨⎨⎩
ω

(0)
1 = . . . = ω

(0)
k = 1

k
,

σ (0) = �μ

2
.

(21)

The criterion for iterative convergence of CGMM is that
the absolute value of difference between the mean log-
likelihood values of two adjacent iterations is less than
10−4. Fig. 12 shows the training process of CGMM for a
4-lane road under different k ∈ [1, 6]. It can be seen that
when k is set as the correct number of lanes, the CGMM
generated by EM can fit the dataset best with the largest
mean log-likelihood, which validates the effectiveness of
eLane-EXT .

To measure the accuracy of eLane-EXT , we take 10 consec-
utive samplings on the randomly selected roads under 4 types
of lanes: 2-lane, 3-lane, 4-lane and 5-lane, and perform the
quantitative evaluations on both the accuracy of lane number
identification and the accuracy of lane position extraction.
The quantitative evaluation on the accuracy of lane number
identification is done by marking the identified results by
eLane-EXT on the Google satellite map and manually counting
the correct number of lanes, then comparing the human-
interpreted results with the identified results. Fig. 13 (a) and
Fig. 13 (b) respectively show the identified number of lanes
before and after the optimization mentioned in section IV-C,
and it proves that our proposed optimization method can
greatly improve the accuracy of lane number identification.
The experiments show that our proposed eLane-EXT achieves
an overall accuracy of 83.3% in the lane number identification,
which is superior to 76.9% by [3] but slightly inferior to 85.2%
by [5]. However, the higher accuracy in [5] depends highly
upon the additional DGPS data, which is not easy to obtain
in crowdsourcing scenarios.

The quantitative evaluation on the accuracy of lane position
extraction is usually performed through the comparison with
a lane-level map in high-accuracy GPS data (e.g., DGPS).
However, due to the lack of such data, we can only perform the
quantitative evaluation through the above human understand-
ing method. We design a metric Fp inspired by F1 − score
as

Fp = 2 × precision p × recall p

precision p + recall p
, (22)

where recall p = cv p

Groundp
and precision p = cv p

Mp
. Mp is

the number of extracted lanes, Groundp is the actual number
of lanes, and cv p is the number of extracted lanes matched
by the actual road conditions. Fig. 14 marks the extracted
results of 4 types of lanes on the Google satellite map where
yellow markers depict the extracted centerline of each lane.
According to the experiments, Fp is 0.87 on average for
40 sampling areas under 4 types of lanes, and it indicates that
most of extracted lane-level road information by eLane-EXT
can accurately identify the actual lane positions.
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Fig. 12. Training process of CGMM on a 4-lane road when the number of lanes k is estimated in [1, 6].

Fig. 13. Lane number identification and optimization. (a) before optimization;
(b) after optimization.

C. Comparative Analysis

In this subsection, we will compare our eLane with the state-
of-the-art lane-level map building schemes in Table III in the
following three aspects: 1) the visualization of final extracted
results; 2) the time efficiency in terms of the number of EM
iterations and run time; 3) the extraction accuracy of different
data volumes.

1) Result Visualization: Fig. 15 marks the lane centerlines
extracted by all the comparison schemes on the Google
satellite map. In Fig. 15 (b) and Fig. 15 (c), we see that the
lane centerlines extracted by [3]–[5] are not smooth and con-
secutive. The reason is that they all separately set rectangular
sampling areas and the predicted results of each sampling

area is independent. In Fig. 15 (e) for [35], we see that the
interval between adjacent lane centerlines are not equal, and
it is because that it doesn’t take into account the actual road
information, i.e., the width of lanes on a road is equal and
lane centerlines are equidistant. [34] solves the above defects
by utilizing cubic Hermite spline to extract the skeleton of
roads, as shown in Fig. 15 (d). However, it doesn’t achieve
good efficiency and accuracy, as shown in Fig. 17 and Fig. 18.
In contrast, our eLane achieves higher efficiency and accuracy
while ensuring the continuity of lane centerlines, as shown
in Fig. 15 (a). The reasons are as follows: (1) the skeleton
(i.e., boundaries) of roads are first extracted by LSE and the
number of lanes in each sampling area is accurately estimated
by CGMM;(2) Wrong estimations are finally adjusted based on
the background information: the number of lanes in adjacent
sampling areas is ordinarily equal. Therefore, we can obtain
the exact number of lanes on a road, and then obtain the
accurate lane centerlines by combining the road boundaries
and the number of lanes.

2) Efficiency: Fig. 16 shows the mean log-likelihood of
eLane, [3], [5] and [35], which represents the process of EM
algorithm for different types of lane. From the three subgraphs
for eLane, we see that when k is set as the correct number of
lanes, the estimated model parameters will produce the max-
imum mean log-likelihood compared with other incorrect k.
That is because if k is correct, eLane can obtain the exact loca-
tions {μ1, · · · , μk} of lanes by LSE, and the initial estimate of
σ 0 of each Gaussian component is also close to a half of the
actual lane width. Therefore, eLane can directly determine the
most appropriate k without the additional regularization term
in formula (8). In contrast, from the remaining six subgraphs
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Fig. 14. Marking of lane centerline on Google map when the confidence coefficient of road boundaries is set as 95%.

Fig. 15. Marking of lane centerline extracted by different schemes on the Google map.

for [3], [5] and [35], we can see that there is no significant
difference between the obtained mean log-likelihood under
different k. For this reason, the correct number of lanes cannot
be directly determined, and the additional result selection is
required. Moreover, from Fig. 16, we can see that the number
of iterations of our eLane is much less than that of them. That
is because in each iteration of eLane, the centerline locations
{μ1, · · · , μk} are fixed. Thereby the iteration can converge
quickly when the parameter k does not match the trajectory
cluster. We conduct experiments in different sampling areas
and find that the generic GMM method in [3] and [5] requires
an average of 228 iterations to obtain the estimated results
and [35] requires an average of 179 iterations, while our eLane
only needs an average of 71 iterations.

To comprehensively evaluate the time efficiency of
eLane-EXT , we randomly select 25 sampling areas as
Section V-B and measure its time cost. The time cost of
eLane-EXT in each sampling area contains the time cost of
road feature exaction by LSE and the time cost of estimation
by EM. As shown in Fig. 17, our eLane only takes about one-
third of the time cost of [3], [5] and [34]. That is because [3]
and [5] don’t constrain the parameters of GMM and [34]
requires to calculate the Hausdorff distance between each pair
of points. The time cost of KDE-based solution [4] is similar
to our eLane and while its accuracy is extremely low as shown
in Fig. 18.

3) Accuracy: Since the GPS data from vehicles are widely
distributed in the real-world crowdsourcing, data on some
roads may be missing or the amount of data may be small.

To evaluate the robustness of our eLane, we need to measure
the accuracy of lane-level road information extraction on the
sparse dataset. We select 10 sampling areas as Section V-B,
and equally divide the data of each sampling area into ten
parts, and compare the lane position accuracy Fp in eLane
with those in [3]–[5], [34], [35] under different data volumes.

As shown in Fig. 18, it can be seen that the Fp of [4]
is the lowest. The reason is that trajectories from a single
vehicle are usually spread out over different lanes due to
the inaccuracy of GPS or lane-changing, while the scheme
of [4] regards each “kernel” as a lane and thus is seriously
affected by the trajectory spread. The schemes of [3], [5]
and [35] achieve similar accuracy, because their methodologies
are all based on the GMM. Their differences are as follows:
the scheme of [5] only optimizes the final estimates of [3],
and the scheme of [35] simplifies the GMM of [3] and [5].
However, since the parameters of GMM are not be constrained
properly, their Fps are relatively low. We can also see that the
increasing data volume even reduces Fp (e.g., 20%, 70% and
90%) in [34] and it proves that [34] is sensitive to outliers.
That is because, it requires to calculate the Hausdorff distance
between each pair of points, and the error of outliers will be
accumulated in the process of extraction. We can conclude that
our eLane achieves higher accuracy than the other schemes
under the same volume of data. Moreover, to achieve the
same accuracy, our eLane only needs about one-second of the
data volume required by them. It indicates that our eLane still
works effectively in the crowdsourcing scenario with sparse
data.
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Fig. 16. Estimation process of eLane, [3], [5] and [35] when the iterative convergence threshold of EM algorithm is 10−4.

Fig. 17. Time cost of lane-level road information extraction.

Fig. 18. Average accuracy of lane position extraction.

VI. CONCLUSION

In this article, we proposed an efficient and accurate
lane-level map building scheme over the low-precision GPS

trajectories via vehicle-based crowdsourcing. We designed an
efficient segmentation and clustering algorithm to preprocess
interleaved trajectories by considering the global similarity
between trajectories, in which we also designed an entropy-
based heuristic search method to determine the optimum
clustering threshold. We explored the constrained GMM-EM
to design an efficient and accurate lane-level road information
extraction algorithm, which can greatly improve the extraction
efficiency while achieving the high accuracy. We conducted
comprehensive experiments on our eLane and evaluated its
performance in comparison with the state-of-the-art works.
Detailed experimental results show that our eLane has better
efficiency and accuracy.
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