
QoS-Aware Scheduling of Remote Rendering
for Interactive Multimedia Applications

in Edge Computing
Ruitao Xie , Junhong Fang, Junmei Yao, Kai Liu , Senior Member, IEEE,

Xiaohua Jia , Fellow, IEEE, and Kaishun Wu

Abstract—Leveraging emerging edge computing and 5G networks, researchers proposed to offload the 3D rendering of interactive

multimedia applications (e.g., virtual reality and cloud gaming) onto edge servers. For high resource utilization, multiple rendering tasks

run in the same GPU server and compete against each other for the computation resource. Each task has its requirement for

performance, i.e., QoS target. A significant problem is how to schedule tasks so that each preset QoS is met and the performance of all

tasks are maximized. We make the following contributions. First, we formulate the problem into a QoS constrained max-min utility

problem. Second, we find that using the common natural logarithm as a utility function overly promotes one performance but demotes

another. To avoid this phenomenon, we design a special utility function. Third, we propose an efficient scheduling algorithm, consisting

of a resolution adjustment algorithm and a frame rate fair scheduling algorithm, both of which interact with each other. The former

selects resolutions for tasks and the latter decides which task to process. We evaluate our method with actual rendering data, and the

simulations demonstrate that our method can effectively improve task performance as well as satisfy QoS simultaneously.

Index Terms—Edge computing, task scheduling, remote rendering

Ç

1 INTRODUCTION

EDGE computing emerges as localized clouds [1], [2]. Due
to the proximity to users, it can achieve a low response

time. Cloud-based interactive multimedia applications,
such as virtual reality and cloud gaming [3], leverage cloud
resources to process their computation-intensive workloads,
so as to remove powerful and expensive hardware from
user devices and lead to lightweight clients. Pioneering

commercial applications include OnLive [4], GeForce Now
[5], CloudXR [6] etc.However, these interactive applications
need high-throughput and low-latency internet connec-
tions, which are challenging for users due to the long dis-
tance from data centers. A promising solution to overcome
this is leveraging emerging mobile edge computing. More
specifically, edge-assisted interactive applications offload
computation-intensive 3D rendering onto GPU-based infra-
structures in mobile edge computing and stream edge-ren-
dered visuals to end users over 5G connections, as
proposed in [7], [8]. As such, the proximity to end users can
greatly reduce latency.

As shown in Fig. 1, an edge-assisted interactive applica-
tion is composed of three parts distributed in different loca-
tions: the application logic running in a cloud server, the
rendering engine running in an edge server, and the display
and control component running in a user device. The three
components interact with each other. Specifically, the ren-
dering engine receives rendering commands from the appli-
cation logic, executes them, and transfers the rendered
frames to the user device. The user device generates control
commands, transfer them back to the cloud server and let it
update the application logic.

For edge-assisted interactive applications, an edge com-
puting provider supplies infrastructure resources and ren-
dering services to users. The provider makes a service level
agreement (SLA) with a user, specifying quality of service
(QoS) targets and economical penalties associated with SLA
violations. For interactive applications, the performance
which concerns us includes resolution, frame interval/rate,
and latency. We set QoS targets by defining requirements
for each performance.

� Ruitao Xie, Junhong Fang, and Junmei Yao are with the College of Com-
puter Science and Software Engineering, Shenzhen University, Shenzhen
518060, China. E-mail: {drtxie, fangjh111b}@gmail.com, yaojunmei@szu.
edu.cn.

� Kai Liu is with the College of Computer Science, Chongqing University,
Chongqing 400044, China. E-mail: liukai0807@cqu.edu.cn.

� Xiaohua Jia is with the Department of Computer Science, City University
of Hong Kong, Hong Kong, China. E-mail: csjia@cityu.edu.hk.

� Kaishun Wu is with the College of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen 518060, China, and also with the
PCL Research Center of Networks and Communications, Peng Cheng Lab-
oratory, Shenzhen 518066, China. E-mail: wu@szu.edu.cn.

Manuscript received 26 Nov. 2021; revised 24 Apr. 2022; accepted 28 Apr. 2022.
Date of publication 3 May 2022; date of current version 26 July 2022.
This work was supported in part by China NSFC under Grants 61802263,
62072317, and 62172064, in part by the Grant from Research Grants Council
of Hong Kong under Grant CityU 11202419, in part by the Faculty Research
Fund of Shenzhen University under Grant 860/000002110325, in part by the
China NSFC under Grants U2001207 and 61872248, in part by Guangdong
NSF under Grant 2017A030312008, in part by Shenzhen Science and Technol-
ogy Foundation under Grants ZDSYS20190902092853047 and R2020A045,
in part by the Project of DEGP under Grants 2019KCXTD005 and
2021ZDZX1068, and in part by Guangdong “Pearl River Talent Recruitment
Program” under Grant 2019ZT08X603.
(Corresponding author: Kai Liu.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TPDS.2022.3172121

3816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
mailto:drtxie@gmail.com
mailto:fangjh111b@gmail.com
mailto:yaojunmei@szu.edu.cn
mailto:yaojunmei@szu.edu.cn
mailto:liukai0807@cqu.edu.cn
mailto:csjia@cityu.edu.hk
mailto:wu@szu.edu.cn

To improve resource utilization, multiple rendering tasks
coexist on an edge server and share a common processor,
each supplying a rendering service for one interactive appli-
cation. They compete against each other for the computa-
tion resource. Thus, a QoS-aware rendering task scheduling
problem arises, that is how to schedule rendering tasks so
that all tasks could receive good performance and fulfill
QoS targets at the same time.

Given a set of rendering tasks assigned on a server and a
set of resolutions to use, when the server is available, two
decisions have to be made in scheduling: 1) which task to
schedule; 2) which resolution to use for rendering. Making
these decisions is complicated, with the ultimate goal being
to deliver the best possible rendered frames to each user
promptly. For one thing, user requirements must be met;
for another, if abundant resource is available, we need to
make good use of that to maximize user satisfaction.

Naively scheduling in a round robin manner using fixed
resolutions leads to a fixed frame rate for all tasks, as they
will be executed at the same frequency. This may achieve
neither of the objectives mentioned above, because different
users may have different frame rate requirements, and it
cannot make good use of abundant computation resource
as well. Furthermore, promoting resolutions increases both
processing time and transmission time, and aggressively
promoting may violate latency requirements. As such, the
scheduling algorithm must consider the trade-offs between
each pair of performance and try to make optimal choices.
Different from traditional scheduling problems, the biggest
challenge in our problem is to achieve a balance between
multiple distinctive performance metrics, under hard con-
straints over resolution, frame interval, and latency that
guarantee interactivity.

Overall, in this paperwemake the following contributions:

� We formulate the QoS-aware rendering task sched-
uling problem into a QoS constrained max-min util-
ity problem.

� With the natural logarithm as a utility function, we
find that it overly promotes one performance but
demotes another. To achieve multiple QoS targets at
the same time, we design a special utility function.

� We propose an algorithm to address the scheduling
problem. It is composed of a resolution adjustment
(RA) algorithm and a frame rate fair (FRF) schedul-
ing algorithm, both of which interact with each
other. The former selects resolutions for tasks intelli-
gently, and the latter decides which task to process.

To evaluate our method practically, we produce simula-
tion environments using actual rendering data. We compare
our method with several classical scheduling algorithms.
Our simulations demonstrate that our method performs bet-
ter than the others under various computing loads. It can
effectively improve task performance and satisfy QoS tar-
gets simultaneously.

The rest of this paper is organized as follows. Section 2
introduces the related works. Section 3 presents an over-
view of edge 3D rendering. Section 4 discusses quality of
service and task assignment. Section 5 presents the formula-
tion of the QoS-aware rendering task scheduling problem.
Section 6 presents our algorithm. In Section 7, we introduce
simulation setup. In Section 8, we present simulation and
performance evaluation. Section 9 concludes the paper.

2 RELATED WORK

We review the existing works related to our problem, and
categorize them into two groups as follows.

2.1 Resource Management

This is an active research field in resource-sharing systems.
Existing works [9], [10] pack tasks to machines based on
their requirements of all resource types. Li et al. in [11] pro-
posed an algorithm for allocating requests to servers in
order to minimize response time and maximize the profit of
service providers. Li et al. in [12], [13] investigated workflow
scheduling problems in cloud systems. Ren et al. in [14] pro-
posed a dependent task offloading framework for multiple
mobile applications, and in [15] they studied a distributed
computation offloading problem with delay constraints for
edge computing. Cao et al. in [16] optimized response time
of interactive mobile applications using intelligent computa-
tion offloading. These task assignment/offloading problems
allocate a given set of tasks (dependent or not) onto a set of
cloud/edge nodes to minimize job completion time, mini-
mize resource consumption or maximize profit. After task
assignment/offloading, multiple tasks may coexist on a
server and share the same processor (GPU/CPU). How to
schedule such concurrent tasks is addressed in this paper.
Some works propose algorithms to schedule multiple appli-
cations to share the same GPU to improve GPU utilization
[17]. However, they do not consider the user-defined perfor-
mance requirements for individual applications, like the
QoS requirements in our work. Zhang et al. in [18] proposed
a task assignment system GCloud to assign cloud gaming
tasks to machines. Zhang et al. in [19], [20] proposed virtual-
ized GPU scheduling algorithms to meet the required fram-
erate and maximize GPU usage for cloud gaming. They do
not consider resolution optimization and the impact of net-
work transmission as in our work. Scheduling data process-
ing jobs on distributed compute clusters is another active
research field, whose goal is usually to minimize average
job completion time [21], [22]. Our work maximizes user

Fig. 1. The architecture of edge 3D rendering.

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3817

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

satisfaction, which includes frame rate and resolution, and
minimizing job completion time only affects frame rate.

2.2 Remote Rendering

Several commercial cloud gaming platforms have launched
recently, such as OnLive [4], GeForce Now [5], Stadia [23],
CloudXR [6] etc. These services need high-throughput and
low-latency internet connections, which is hard to ensure. A
promising solution is to leverage emerging edge computing
close to users. Researchers have proposed some prototype
systems, such as the edge-assisted VR gaming in [24] and
the AR application in [25]. However, they did not consider
frame-by-frame GPU scheduling like what we proposed.
For edge-assisted or cloud-assisted interactive applications,
to improve the quality of experience (QoE) of users and
reduce latency, lots of techniques have been proposed from
different perspectives. Liu et al. in [26] proposed a parallel
rendering and streaming mechanism to reduce the stream-
ing latency, and a remote VSync driven rendering technique
to minimize display latency in remote rendering. Liao et al.
in [27] proposed to use compression techniques to save
bandwidth for transmitting rendering commands and
geometry data. Zhang et al. in [7] proposed a bitrate control
algorithm which determines the compression parameters
according to network dynamics. Different from these works,
we improve performance by determining frame rate and
resolution before rendering and encoding.

3 SYSTEM MODEL

Edge 3D rendering plays an important role in emerging
interactive applications, such as AR/VR and video gaming.
As shown in Fig. 1, a system may consist of cloud servers,
edge servers and user devices. Cloud servers host the core
logic of an application; edge servers provide rendering and
encoding; user devices provide decoding and displaying.
An information loop forms among them. Cloud servers gen-
erate rendering commands (which manipulate geometric
objects to generate video scenes as discussed in [27]) and
transfer them to edge servers; edge servers produce frames
and transfer them to user devices; user devices generate
control commands, transfer them backward to cloud servers
and let the latter update the application logic. It is noted that
the application logic may be offloaded to edge servers as
well. The rendering task scheduling problem is the same in
that situation.

Interactive applications are greatly different from tradi-
tional ones like video streaming. In the latter, there is no
interaction between a user and a video, and the user is inter-
ested in all the frames. Thus, the rendering engine queues
and processes all the rendering commands, and the frames
can be cached on the user device if not viewed immediately.
However, in the former, an application has an internal state.
The user actively changes the state by providing input, and
immediately observes the state via rendered frames. The
user is only interested in the latest state resulting from the
latest input, and previous states can be discarded if their
frames cannot be rendered in time. As a result, the engine
only processes the latest rendering command which over-
rides any previous unprocessed commands. In this paper,
we only focus on the interactive case.

For edge-assisted interactive applications, an edge com-
puting provider supplies infrastructure resources and ren-
dering services to users. When a user plans to offload its
rendering task, it states resource demand. Then, the user
and the provider make a service level agreement on the
quality of service (QoS). If the agreed QoS is not met, then
the customer may ask for a refund from the provider.

For a rendering task, once its resource demand and QoS
are set, the provider will assign it to an edge server. To
improve the resource utilization of servers, multiple tasks
may coexist on a server. The running of each task is orches-
trated by a scheduler to achieve each preset QoS. We will
discuss QoS and task assignment in the following section.
The scheduling problem will be formulated in Section 5.

4 QOS AND TASK ASSIGNMENT

4.1 Quality of Service

We first discuss the QoS for interactive applications. Resolu-
tion and frame rate are two common key concerns of video
applications. Thus, we consider them in QoS. High resolu-
tion leads to better image quality, and a high frame rate is
required for smooth user interaction. Furthermore, latency
is critical for the user experiences of interactive applications,
such as AR and VR [28], [29]. Low latency is required to
ensure responsiveness for user interactions. In this paper,
we only consider the latency relevant to rendering schedul-
ing, that is the latency from the time when a rendering com-
mand arrives at the system to the time when a user receives
the associated rendered frame. These factors, resolution,
frame rate, and latency, play important roles in interactive
applications as discussed in [7].

There is a trade-off between resolution and latency. High
resolution leads to long rendering time and transmission
time, both resulting in long latency. Also, there is a trade-off
between resolution and frame rate. High resolution leads to
low-frequency scheduling and thus a low frame rate.

The requirements for these performance (resolution,
frame rate, and latency) constitute a set of QoS targets. The
trade-offs mentioned above should be considered in defin-
ing a set of QoS targets. Otherwise, the requirements may
be unmet. A problem arises, that is how to define QoS tar-
gets. An in-depth investigation of this problem depends on
implementation details of the system and pricing model
[30], [31]. It is independent of the rendering scheduling
problem and thus is beyond the scope of this paper.

4.2 Task Assignment

For a task, given its demand for resources, such as network
bandwidth, GPU/CPU memory, GPU/CPU type, GPU/
CPU amount, storage etc., the task will be assigned on a
server with sufficient resources such that its demand is met.
To improve the resource utilization of edge servers, multi-
ple tasks may be assigned on a server, if the total demand
does not exceed the server capacity. The rendering task
assignment problem can be formulated as a multi-dimen-
sional bin packing problem. Existing algorithms [9], [10],
[18] can solve the problem. However, multiple rendering
tasks may share resources and assigning them together can
reduce resource consumption. In our previous work [32],
we considered resource sharing among rendering tasks and

3818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

proposed a sharing-aware offloading algorithm to reduce
resource consumption.

5 FORMULATION OF TASK SCHEDULING

For a task, we introduce a utility function to quantify its per-
formance. Since there aremultiple tasks to optimize, wemax-
imize the minimum utility among them. The rationale of this
max-min formulation is to try our best to satisfy the require-
ments of all users and provides extra performance (e.g., bet-
ter frame quality) if computation resource is abundant.

Here we give a quick overview of the task scheduling
formulation, which will then be detailed in the following
sections. Given n rendering tasks fs1; s2 . . . sng, each task is
constantly receiving rendering commands from the servers
that host the application logic (see Fig. 1), and denote oik as
the kth command received by si. The execution of oik consti-
tutes a rendering command execution task, aka RCE-task,
denoted as ôik, which when finished will result in an image
sent to the user. Note that a rendering task only caches the
latest command, so if the execution of oik does not begin
before oi;kþ1 arrives, oik will be discarded. This is due to the
nature of interactive applications where users always want
to see the latest response to their input, and if previous
responses are shown then the application will appear lag-
ging. If the RCE-tasks belonging to si are executed very fre-
quently in high resolution, then the user served by si will
experience high frame rate and best image quality, which is
desirable. However, it is at the cost of the experience of
other users due to the limited computation resources. Our
goal is to schedule and execute the RCE-tasks fôikg so that
all QoS requirements (resolution, frame rate and latency)
are satisfied and the utility function that measures user
experience is maximized.

Formally, we would like to find an order to execute the
RCE-tasks, Ô ¼ ½ôi1k1 ; ôi2k2 ; . . . ; ôiNkN �, where ôitkt is the
RCE-task for the ktth command of the rendering task skt . To
execute the RCE-tasks, We also need to select a resolution
ritkt for each RCE-task ôitkt . Executing all the RCE-tasks in
the given order using the selected resolutions will lead to
different average resolution, frame rate and latency for dif-
ferent rendering tasks, and these performance metrics are
combined into a utility function, optimized under con-
straints specified by QoS requirements.

5.1 QoS Constrained Max-Min Utility Problem

In this section, we first define the utility function for a ren-
dering task and then present the formulation that maxi-
mizes the total utility of all rendering tasks. For a rendering
task, given its required resolution rmin and the achieved one
r (that is, the rendering commands of this task are executed
using resolution r), we formulate its performance as uð r

rmin
Þ,

where uðxÞ is a concave nondecreasing utility function. It is
positive if x is larger than one and negative otherwise. Simi-
larly, for the maximum tolerable latency dmax, we formulate
the performance to be uðdmax

d Þ. However, for the minimum
required frame rate fmin, we use its reciprocal, namely,
frame interval hmax ¼ 1

fmin
, to measure the performance.

Frame interval is the time elapsed between two consecutive
frames, and frame rate is a statistic over a period of time.
The former is a stronger requirement, in that a constant

frame interval guarantees an even distribution of received
frames over time but a constant frame rate does not. So for
the frame rate requirement, the performance measurement
is uðhmax

h Þ, where h is the measured frame interval. The over-
all performance as a weighted sum

uðr; h; dÞ ¼ uru

�
r

rmin

�
þ uhu

�
hmax

h

�
þ udu

�
dmax

d

�
; (1)

where ur, uh and ud are the weights for balancing each kind
of performance. They are all nonnegative and summed to 1.

We now discuss how to compute the utility for a render-
ing task after all of its rendering commands have been exe-
cuted. Given the order of RCE-tasks Ô ¼ ½ôi1k1 ; . . . ; ôiNkN �,
we can execute them one by one. After each execution, a
frame is produced, which is then encoded and transmitted.
However, during encoding or transmission, congestion may
happen and the frame may be dropped, so the frame is not
received by the user and does not contribute to the user
experience (and therefore the utility). To focus only on the
effective RCE-tasks, for a rendering task si, we define a sub-
sequence of Ô whose resulted frames are all received by the
user as Ôi ¼ ½ôitkt 2 Ôjit ¼ i ^ ritkt ¼ 1�, where ritkt ¼ 1 if
the frame obtained by executing ôitkt is successfully received
by the user, and 0 otherwise. For simplicity we redefine the
indices of Ôi and denote it by Ôi ¼ ½ôi1; ôi2; . . . ; ôi;mi

�, where
ôij represents the RCE-task for the jth executed command of
task si and whose frame is received by the user. We take
these user-received frames to evaluate performance. To exe-
cute ôij, a resolution rij is selected, and after its execution,
frame interval hij and latency dij are obtained. An instant
utility can be got from (1), that is uðrij; hij; dijÞ. The utility of
a task is defined as the average utility of all commands exe-
cuted, denoted by ui, that is

ui ¼ 1

mi

Xmi

j¼1
uðrij; hij; dijÞ: (2)

However, this utility function does not consider fluctua-
tions in frame intervals which may lead to negative impact
on user experience. To take that into account, we add a pen-
alty term vi related to the variance of the frame intervals,
discussed in Section 5.3, into the utility function and define
the final utility as follows:

~ui ¼ ui � fvi; (3)

where f is a weight parameter. Note that ui and ~ui are both
utility functions, and by default we refer to ~ui, unless stated
otherwise.

Our problem is formulated as

maximize mini¼1...n ~ui (4a)

subject to
1

mi

Xmi

j¼1
rij � rimin 8i ¼ 1 . . .n (4b)

1

mi

Xmi

j¼1
hij � hi

max 8i ¼ 1 . . .n (4c)

1

mi

Xmi

j¼1
dij � dimax 8i ¼ 1 . . .n; (4d)

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3819

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

where rimin, h
i
max, and dimax denote the required resolution,

the maximum tolerable frame interval, and the maximum
tolerable latency for task si respectively. The three con-
straints in the above formulation ensure the average perfor-
mance of each kind. For a problem (4) and a scheduling
policy, if all three constraints are satisfied, we say QoS satis-
faction; otherwise, we say QoS violation. It is noted that we
not only formulate latency in the objective but also limit it
in the constraints. The reason is that for interactive applica-
tions which require immediate response to user input, a
hard limit exists for latency.

5.2 Definition of u(x)

One might take the natural logarithm log ðxÞ as utility func-
tion and formulate the overall performance as

urlog

�
r

rmin

�
þ uhlog

�
hmax

h

�
þ udlog

�
dmax

d

�
: (5)

However, this may cause an incentive to overly promote
one performance but demote another. We take an example
to illustrate this. We consider the objective which contains

only two terms 1
2 log ð r

rmin
Þ þ 1

2 log ðhmax
h Þ, where resolution r is

chosen from {1920�1080, 2560�1440, 3840�2160} and frame

interval h is chosen from { 118 s,
1
24 s,

1
30 s,

1
60 s}, corresponding

to 18, 24 , 30 and 60 frame-per-second (FPS). Let rmin be

1920�1080 and the required frame rate be 30 FPS. We then
illustrate all cases in Fig. 2a. It is shown that promoting reso-

lution (to 2560�1440 or 3840�2160) but demoting frame rate

(to 18 or 24 FPS) result in positive values, which is better

than satisfying both.
In order to avoid the above issue, we must find a utility

function such that uðr; h; dÞ � 0 only if all three kinds of per-
formance requirements are satisfied, that is r

rmin
� 1, hmax

h � 1,
and dmax

d � 1 are met simultaneously. To this end, we define
a utility function as follows:

uðxÞ ¼ 1� e1�x; x � 1;

log ðxÞ � a; x < 1;

�
(6)

where a is a nonnegative constant adjusted for penalizing.
When x > 1, uðxÞ is in ð0; 1�; when x ¼ 1, uðxÞ ¼ 0; when
x < 1, uðxÞ is in ½�1;�aÞ. This is illustrated in Fig. 3.

This utility function has several advantages over log ðxÞ.
First, it is upper bounded by one rather than increasing to
infinity. This is helpful when balancing the trade-off among

the three kinds of performance. Second, the function has
two pieces and the negative piece can be adjusted separately
to bring a sufficient penalty for any performance violation.
In the other words, parameter a can be set carefully so that
if any kind of performance is violated then uðr; h; dÞ < 0
holds. This is stated in the following theorem.

It is noted that we can set the same a for those three func-
tions uð r

rmin
Þ, uðhmax

h Þ, and uðdmax
d Þ, but this setting is not tight.

Instead, we set a separately and denote them by ar, ah and
ad respectively.

Theorem 1. For all r, h and d, uðr; h; dÞ � 0 only if all three
kinds of performance requirements are satisfied, if and only if
the penalty parameter a in the utility function (6) satisfies the
following constraint:

ar � sðurÞ;ah � sðuhÞ; and ad � sðudÞ; (7)

where

sðuÞ ¼
1�u
u
; u 6¼ 0;

0; u ¼ 0:

�
(8)

This can be expressed using logical connectives as follows:

8r8h8d uðr; h; dÞ � 0! r
rmin
� 1 ^ hmax

h � 1 ^ dmax
d � 1

� �� �
$$ ar � sðurÞ ^ ah � sðuhÞ ^ ad � sðudÞð Þ: (9)

Proof. The theorem is logically equivalent to

8r8h8d r
rmin

< 1 _ hmax
h < 1 _ dmax

d < 1
� �

! uðr; h; dÞ < 0
� �

$$ ar � sðurÞ ^ ah � sðuhÞ ^ ad � sðudÞð Þ: (10)

We prove the forward implication first.
The proof idea is to suppose a combination ðr; h; dÞ

makes the disjunction r
rmin

< 1__ hmax
h < 1__ dmax

d < 1 true,

then uðr; h; dÞ < 0, which implies that 0 is an upper

bound of uðr; h; dÞ. We find the supremum of uðr; h; dÞ,
then we have the supremum must not be greater than 0

and get the conclusion. There are 23 � 1 ¼ 7 kinds of

assignment to ðr; h; dÞwhich makes the disjunction r
rmin

<

1__ hmax
h < 1__ dmax

d < 1 true. Each corresponds to a

supremum.
Suppose ur 6¼ 0 and the resolution requirement is vio-

lated, that is r
rmin

< 1, but the other two performance
requirements are met, that is hmax

h � 1 and dmax
d � 1. At this

time, the supremum of uð r
rmin
Þ is �ar, but the supremum

of both uðhmax
h Þ and uðdmax

d Þ is 1. Then, we have the
supremum of the weighted sum uðr; h; dÞ is �urar þ uh þ
ud. As mentioned above, at this situation 0 is an upper

bound of uðr; h; dÞ. Thus, the supremummust satisfy

Fig. 2. The comparison between two forms of utility function, where rmin

is 1920� 1080 and hmax is 1
30 s. Marker size is proportional to absolute

value. (a) 1
2 log ð r

rmin
Þ þ 1

2 log ðhmax
h Þ; (b) 1

2uð r
rmin
Þ þ 1

2 uðhmax
h Þ, where uðxÞ is

defined in (6) with ar ¼ ah ¼ 1.

Fig. 3. The utility function uðxÞ (with a as 1) versus the natural logarithm.

3820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

�urar þ uh þ ud � 0; (11)

and we get

ar � 1� ur

ur
when ur 6¼ 0: (12)

Similarly, suppose only frame interval requirement is
violated, we get

ah � 1� uh

uh
when uh 6¼ 0: (13)

Moreover, suppose only latency requirement is violated,
we get

ad � 1� ud

ud
when ud 6¼ 0: (14)

Note that the other four kinds of assignment such that
the disjunction r

rmin
< 1__ hmax

h < 1__ dmax
d < 1 are not

needed to analyze because the resulted supremum val-
ues are lower than the above three. Putting them
together, we have proved the forward implication in
(10). The converse can also be easily proved. tu
For example, when ur ¼ uh ¼ 1=2 and ud ¼ 0, we set ar ¼

ah ¼ 1 according to Theorem 1. As illustrated in Fig. 2b,
once hmax

h < 1, the value of 1
2uð r

rmin
Þ þ 1

2 uðhmax
h Þ becomes

negative.

5.3 Penalty of Frame Interval’s Variation

As mentioned before, the variation in the frame interval also
has a significant impact on user experience. For a sequence
of received frames, the less volatile the frame interval is, the
better the user experience. A sudden increase in frame inter-
val may interrupt user interactions. We use the relative stan-
dard deviation (RSD), which is the ratio of standard
deviation to mean, to formulate the variation.

For task si, suppose a sequence of mi frames are received
by the user side, let hij denote the instant frame interval
after receiving the jth frame. Then the mean of frame inter-
val for task si is

EðhÞi ¼
1

mi

Xmi

j¼1
hij; (15)

and the mean of frame interval square is

Eðh2Þi ¼
1

mi

Xmi

j¼1
h2
ij: (16)

Let vi denote the relative standard deviation (RSD) of frame
interval for task si, then we have

vi ¼ StdðhÞi
EðhÞi

¼
ffi
Eðh2Þi �EðhÞ2i

q
EðhÞi

: (17)

With the penalty included, the performance becomes (3).

6 SCHEDULING ALGORITHM

We propose an algorithm to address the scheduling prob-
lem. As illustrated in Fig. 4, it is composed of a resolution
adjustment (RA) algorithm and a frame rate fair (FRF)

scheduling algorithm. The former selects resolutions for
tasks, and the latter decides the order of tasks to schedule,
which is called scheduling sequence. Once a server is avail-
able, the processor executes rendering commands in the
order of scheduling sequence, with the resolution arrange-
ment determined by the RA algorithm. After many rounds
of command executions, the utility is evaluated and fed
back to the RA algorithm, which decides how to update the
resolution arrangement. The resolution arrangement also
affects the FRF scheduling algorithm since one of the algo-
rithm’s inputs is the average processing time per command
for each task, which is proportional to resolution. The FRF
scheduling algorithm further consists of two sub-algo-
rithms: weighted max-min frame rate algorithm and sched-
uling sequence algorithm. They are called in sequence,
where the former gets a scheduling frequency vector ff (the
number of command executions per time unit for each task
) and then the latter gets a scheduling sequence vector SS.

6.1 Resolution Adjustment Algorithm

For each task, a set of k resolutions could be used. A low res-
olution may not meet the resolution requirement, while a
high resolution may lead to long processing time and trans-
mission time, further results in long latency and may violate
the latency constraint. Thus, when there is a single task, its
utility is a concave function of resolution. However, when
multiple tasks contend against each other, how an individ-
ual resolution decision affects the final utility (which is the
minimum over all tasks) is complicated.

Given n tasks and k resolutions, each task chooses a reso-
lution, and we can get nk permutations, each representing a
resolution arrangement. A naive way is to try all of them
and select the best one. However, it takes OðnkÞ rounds.
Moreover, trying out too many bad arrangements degrade
overall performance. To address these issues, we start from
an initial arrangement and gradually elevate it until the
overall utility does not improve anymore, so as to avoid bad
arrangements as much as possible.

For such an algorithm, three design issues matter. The
first is the initial resolution; the second is how to elevate a
resolution arrangement; the third is the convergence condi-
tion. We discuss each of them in the following. The initial
resolution for each task should be the resolution requested
by the user, using which can meet the resolution require-
ment. When computation resource is abundant, promoting

Fig. 4. The framework of our algorithm.

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3821

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

resolution for some tasks may improve the overall perfor-
mance. Among all tasks, the task with the lowest utility
should be favored as it limits the overall performance.
Thus, we elevate a resolution arrangement by promoting
the resolution of the worst-performing task by one level.
We keep raising resolutions until the overall utility drops
due to insufficient computation resource, when the algo-
rithm is deemed to be converged. However, the random-
ness in the running system may result in performance
fluctuation, which may mislead the algorithm into making
premature convergence. To tolerate this uncertainty, we
only allow a significant utility reduction to trigger conver-
gence. Note that the trial should continue when the utility
has no change, since ties may exist and in that situation pro-
moting a single resolution may not improve the minimum
performance but promoting all resolutions can.

Another critical question is when to adjust resolution. To
evaluate the performance of a resolution arrangement as
accurately as possible, we have to maintain each resolution
arrangement long enough before changing it. Besides, video
encoding complicates the question a bit. The rendered
frames are usually encoded in groups of pictures (GOP).
Each GOP includes an intra-coded frame, which is encoded
independently, and many inter-coded frames, which are
encoded depending on the previous frames in the same
GOP. For a group of pictures, the same resolution should be
used. Otherwise, normal video encoding techniques (e.g.,
H.264, MPEG-4, etc.) cannot support. Thus, for each task,
only when a GOP finishes, can its resolution be adjusted.
Taking the above two aspects into consideration, a resolu-
tion adjustment is initiated when two conditions are met
simultaneously: 1) enough time has passed since the last
adjustment; 2) a GOP has finished encoding for the task to
adjust. In our simulation later, the GOP length is 64 frames,
and the resolution maintaining time is set to the time for
rendering 1024 frames, which is counted over all tasks.

We present the resolution adjustment algorithm in Algo-
rithm 1. Let rr denote the resolution arrangement set cur-
rently, which is a vector, each element of whom is a
resolution for a task. Our algorithm starts from the initial
arrangement rrmin (the required resolutions) and runs itera-
tively. As mentioned above, each iteration is initiated by
two conditions. In each iteration, we first get the task which
initiates this iteration, say sk (line 5), since only this task has
an opportunity to adjust its resolution in this round. Next,
we compute the average utility ~ui for every task since the
last resolution adjustment (i.e., the last change of rr) accord-
ing to (3), as well as the overall utility ~u (line 6). Actually, ~u
is a performance measurement of the current resolution
arrangement rr. If the algorithm has been deemed to be con-
verged, then we recover the resolution of the initiation task
according to the best solution found so far (denoted by rr�)
(lines 7-8). Otherwise, if the initiation task sk gets the least
utility, then we decide whether to elevate rr or terminate
(lines 9-23). It is noted that if the initiation task does not
lead to the least utility, then we are not about to promote its
resolution, since the promotion is unable to improve the
least utility.

Specifically, the algorithm in lines 9-23 proceeds in three
steps. First, we record the best solution found so far in order
to recover it when necessary (lines 10-14), where ~u� and rr�

are the maximum utility and the best resolution arrange-
ment found so far respectively. Second, we elevate rr by pro-
moting the initiation task sk’s resolution by one level, if the
following three conditions are satisfied simultaneously: 1) ~u
does not drop significantly relative to ~u� (i.e., ~u � ~u� � �,
where � � 0); 2) with the current resolution arrangement rr,
all the constraints (4b)-(4d) are met; 3) the task sk’s resolu-
tion still has room to increase (lines 15-18). Here, the param-
eter � serves as a margin, which prevents the algorithm
from converging prematurely due to fluctuations in utility.
It is noticed that in evaluating the constraints (4b)-(4d) we
compute the average performance for the commands proc-
essed with the current resolution configuration rr. Finally,
the algorithm converges otherwise. At this situation, we
recover the best solution found before (lines 19-22).

Algorithm 1. Resolution Adjustment Algorithm

1: Initialize converged False
2: Initialize rr rrmin

3: Initialize rr� null; ~u� �1
4: while resolution adjustment is initiated by a task do
5: Get the initiation task sk
6: Get f~ui; 8ig and ~u mini¼1;...;n~ui

7: if converged ¼ True then
8: Recover the resolution of sk according to rr�

9: else if k ¼ argmini¼1;...;n~ui then
10: Record the best solution found so far:
11: if ~u > ~u� then
12: ~u� ~u
13: rr� rr
14: end if
15: if ~u � ~u� � � and
16: all constraints in (4b)-(4d) are met and
17: sk’s resolution is not the maximum then
18: Elevate rr by promoting task sk’s resolution
19: else
20: converged True
21: Recover the resolution of sk according to rr�

22: end if
23: end if
24: end while

The rendering tasks served by an edge server change
dynamically, so the computing load will also change
accordingly. Thus, when a new task starts or an old task fin-
ishes, we restart the resolution adjustment algorithm so that
the resolution arrangement can adapt to changes.

In the resolution adjustment algorithm, in each iteration,
we compute the utility ~ui for every task according to (3),
and calculate the least utility (i.e., mini¼1;...;n~ui). The con-
straints (4b)-(4d) are also evaluated. Thus, the time com-
plexity at each iteration is OðnÞ.

6.2 Frame Rate Fair Scheduling Algorithm

In this section, we propose a scheduling algorithm to opti-
mize QoS.

6.2.1 Scheduling Algorithm

Given a set of n tasks fs1; s2 . . . sng, we may schedule them
in a round robin way, and then each task would get similar
rendering frequencies and frame rates. However, this is

3822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

unable to achieve the best fairness when tasks have distinc-
tive requirements for frame rate/interval, and may also vio-
late the frame interval constraint for some tasks with high
requirements. Instead, we optimize scheduling frequency
for each task to achieve weighted max-min fairness [33],
[34] in terms of frame rate. We call this weighted max-min
frame rate problem. A frame rate allocation is max-min fair if
one cannot increase the frame rate of a task without decreas-
ing that of another task which already has a lower frame
rate.

Our goal is to achieve the fairness of the long-term frame
rate, but the scheduling frequency of a task is only planned
for the next period, which decides short-term frame rate.
The relationship between the short-term scheduling fre-
quency and the long-term frame rate is derived as follows.
For task si, let fi denote the expected scheduling frequency
in the coming period, whose duration will be decided later.
Suppose the average frame rate achieved so far, which is
the long-term frame rate, is �fi, then after the next period the
achieved long-term frame rate, denoted by xi, becomes

xi ¼ ð1� bÞfi þ b�fi; (18)

where b is a constant parameter. Then, the long-term frame
rate ratio is xi=f

i
min. The weighted max-min frame rate problem

is to find the weighted max-min fair vector xx on a feasible set,
which will be analyzed later. According to [33], [34],
weighted max-min fairness is defined as follows. Given
some positive weights fi

min, a vector xx is weighted max-min
fair on a feasible set, if and only if increasing one component
xs must be at the expense of decreasing some other compo-
nent xt such that xt=f

t
min � xs=f

s
min.

With the weighted max-min fair xx, we can get short-term
frame rate vector ff from (18). Next, we determine the dura-
tion of the next period. In order to make sure that every task
with nonzero fi is scheduled at least once, we set the period
duration to 1=minijfi > 0fi. As a result, the number of sched-
uling times for task si in the next period, denoted by Qi, is

Qi ¼ fi
minijfi > 0fi

: (19)

Once the number of scheduling times for each task is
known, we may schedule tasks in a round robin way
according to these quanta. However, it may perform poorly
because it may lead to large fluctuations of frame interval.
In order to smooth out the changes in frame intervals, we
have to optimize the order of tasks to schedule, which is
called scheduling sequence. We formulate it to be a vector,
whose jth element is task sk if sk will be processed in jth
step. For example, given three tasks s1, s2 and s3, suppose
under a plan the three tasks have 1, 2 and 3 commands to
execute respectively, then vector ðs1; s2; s3; s2; s3; s3Þ and
vector ðs1; s3; s2; s3; s2; s3Þ are two types of scheduling
sequence. Suppose a command’s processing time is the
same for every task, then for the task s3, in the former case
there are two frame interval samples: 1 and 0; in compari-
son, in the latter case there are two frame interval samples:
1 and 1. The latter is better than the former in terms of frame
interval’s variation. We define the scheduling sequence prob-
lem: given a set of commands executed in a period, to optimize the

scheduling sequence of these commands such that the penalty of
frame interval’s variation is minimized.

The weighted max-min frame rate problem and the
scheduling sequence problem are two core issues in sched-
uling. With each of them solved, our scheduling algorithm
is easy to design. As shown in Algorithm 2, our scheduling
algorithm proceeds when the processor is available and at
least one task has commands in the queue. It proceeds in a
periodical way. At the beginning of a new period, the algo-
rithm proceeds in four steps:

1) solve the weighted max-min frame rate problem and
obtains a scheduling frequency vector ff (line 6);

2) get the amount of planned command execution
(denoted bymi for task si) from ff (lines 7-10);

3) solve the scheduling sequence problem and obtains a
scheduling sequence vector SS with mm (a vector
whose ith element ismi) as input (line 11);

4) reset the iterator next of SS to zero.
In the second step above, we get mi by accumulating Qi

in a deficit value Di and rounding down Di, instead of
directly rounding downQi. The reason is that with the latter
for some tasks the actual achieved frame rate would be
always lower than the planned value f , resulting in poor
performance. We will demonstrate this in the section of per-
formance evaluation.

During a period, our algorithm traverses the vector SS to
find the next task which has commands and whose deficit
value is not less than one (lines 14-17). Then, it schedules
the chosen task sidx and reduces the associated deficit value
by one (lines 18-19). Once a traversal over the vector SS fin-
ishes, a new period starts (line 5).

Algorithm 2. Frame Rate Fair Scheduling Algorithm

1: Initialize Di 0; 8i
2: Initialize next 1
3: Initializem 0
4: while the processor is available and at least one task has a

command do
5: if next > m then " start a new period
6: ff GetSchedulingFreqð�ff; fminfmin; ��; tt;bÞ
7: Qi fi=minijfi > 0fi; 8i
8: Di Di þQi; 8i
9: mi bDic; 8i
10: m P

i mi

11: SS GETSCHEDULINGORDER(mm; tt; tt0)
12: next 0
13: end if
14: repeat
15: next nextþ 1
16: sidx SS½next�
17: until task sidx has commands andDidx � 1
18: Schedule task sidx
19: Didx Didx � 1
20: end while

6.2.2 Weighted Max-Min Frame Rate Problem &

Algorithm

In this section, we discuss how to formulate and solve the
weighted max-min frame rate problem. We first formulate

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3823

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

the feasible set of xx. The short-term frame rate fi is nonnega-
tive and must not be greater than the arrival rate of com-
mands, denoted by �i, that is 0 � fi � �i. With (18), we have

b�fi � xi � ð1� bÞ�i þ b�fi; 8i ¼ 1 . . .n: (20)

The arrival rate of commands can be estimated via statistical
analysis. The time consumed by running all commands isP

i tifi, where ti is the average processing time per com-
mand for task si. Let the period be one second, then we have

X
i¼1...n

tifi � 1: (21)

With (18), we have

X
i¼1...n

tixi � 1� bþ b
X
i¼1...n

ti �fi: (22)

Thus, the feasible set of xx is

�
xx
��� X
i¼1...n

tixi � 1� bþ b
X
i¼1...n

ti �fi;

b�fi � xi � ð1� bÞ�i þ b�fi; 8i ¼ 1 . . .n

	
: (23)

It is convex and compact. Our objective is to achieve the
weighted max-min fair allocation xx on the set (23), where
xi’s weight is fi

min. According to the theory on max-min fair-
ness, it exists and can be found by the water filling algo-
rithm [33], [34].

Algorithm 3. Optimizing Scheduling Frequency

1: procedure GETSCHEDULINGFREQ (�f�f; fminfmin; ��; tt;b)
2: Get parameters C;Li; Ui;Wi

3: yi Li; 8i ¼ 1 . . .n
4: C0 C �Pn

i¼1 yi
5: I f1; 2; . . . ; ng
6: while C0 > 0 and I 6¼ ; do
7: Get the tasks I0 with the smallest yi=Wi from I
8: V1 the smallest yi=Wi among I
9: V V1 þ C0P

i2I0 Wi

10: if I0 6¼ I then
11: V2 the second smallest yi=Wi among I
12: V minfV; V2g
13: end if
14: yi minfVWi; Uig; 8i 2 I0

15: C0 C �Pn
i¼1 yi

16: I fijyi < Uig
17: end while
18: xi yi=ti; 8i ¼ 1 . . .n
19: fi ðxi � b�fiÞ=ð1� bÞ; 8i ¼ 1 . . .n
20: Return scheduling frequency vector ff
21: end procedure

In order to present the algorithm more clearly, we trans-
form the above problem into a concise form. Let yi ¼ tixi,
then the problem is equivalent to find the weighted max-
min fair allocation yy in the feasible set

yy
��� X
i¼1...n

yi � C; Li � yi � Ui; 8i ¼ 1 . . .n

()
; (24)

where capacity C ¼ 1� bþ b
P

i¼1...n ti �fi, lower bound Li ¼
bti �fi, and upper bound Ui ¼ ð1� bÞti�i þ bti �fi. The weight
of yi isWi ¼ tif

i
min.

We illustrate the water filling algorithm in Algorithm 3.
Its inputs include �f�f , fminfmin, �� and tt, each of which is a vector
composed of �fi, f

i
min, �i and ti respectively. The algorithm

first gets the parameters as shown above (line 2). The algo-
rithm starts the rate (i.e., yi) of each task with the associated
lower bound, and then iteratively increases each rate until
either it reaches the associated upper bound or total capac-
ity runs out (lines 3-17). Let C0 denote the remaining capac-
ity, which is initialized to C �Pn

i¼1 Li, and I denote the set
of tasks whose rate can be increased further, which is initial-
ized to f1; 2; . . . ; ng. In each iteration, the algorithm first
finds the subset of tasks with the smallest weighted rate
(i.e., yi=Wi) among I, which is denoted by I0 	 I (line 7). Sec-
ond, it increases the rates of the tasks in I0 in a fair way,
which maintains the tasks’ weighted rates the same until a
certain level (lines 8-14). Third, it updates the remaining
capacity C0 and removes the tasks that reach their upper
bounds from I (lines 15-16).

Next, we discuss how to increase the rates of the tasks in
I0 (lines 8-14) in detail. The algorithm keeps increasing until
one of the following events takes place: 1) the remaining
capacity runs out; 2) the weighted rate reaches the second
smallest value among I, since at that time the subset I0

changes. In the former case, the weighted rate can reach

V1 þ C0P
i2I0Wi

; (25)

where V1 denotes the smallest weighted rate among I. In the
latter case, the weighted rate can reach the second smallest
weighted rate among I, denoted by V2. It is noticed that V2

does not exist when I0 ¼ I. Overall, the target weighted rate
(denoted by V) to reach is the minimum one between them
(lines 8-13). Then, as shown in line 14, the rate of each task
in I0 should become

yi ¼ minfVWi; Uig; 8i 2 I0: (26)

After obtaining yi by the water-filling algorithm, we get xi ¼
yi=ti and fi according to (18).

6.2.3 Scheduling Sequence Problem & Algorithm

In this section, we introduce how to formulate and address
the scheduling sequence problem. Given m commands exe-
cuted in a period, among which mi commands are for task
si, the duration of a period is T ¼P

i miti, where ti is the
average processing time per command for task si. The
ordering problem is to arrange m commands within the
period ½0; T � such that the penalty of frame interval’s varia-
tion is minimized. The objective is

minimize max
i¼1;...;n

vi; (27)

where vi is the relative standard deviation of frame interval
for task si as defined in (17).

It is noticed that in the formulation introduced in Sec-
tion 5, frame interval is measured at the user side. However,
in the scheduling sequence problem, we plan command

3824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

execution rather than implement it, thus we cannot obtain
frame interval in advance. Instead, we use the time interval
between the planned starts of two commands to approxi-
mate it.

The problem is a combinatorial optimization. We pro-
pose a heuristic algorithm to solve it. The idea is to distrib-
ute mi commands within a period as evenly as possible so
as to smooth out the changes in frame interval. Specifically,
for task si, we try to arrange starting time for mi commands
such that the gap between two consecutive starts is close to

gi ¼ T

mi
: (28)

Let oij denote the jth command of task si and tij denote its
starting time. Then, we use tij � ti;j�1 to approximate frame
interval hij. For command oij, with its starting time tij
arranged, its finishing time can be approximated as tij þ ti.
As a result, ½tij; tij þ ti� becomes a busy interval and has to
be removed from the period ½0; T �. It is noted that the inter-
vals mentioned in this section are left-closed and right-
open. As commands are placed, the period becomes an
ordered set of idle intervals separated by busy intervals
having been arranged. Let E ¼ f½esk; efk �; k ¼ 1; 2 . . .g denote

it, where esk and efk are the starting time and the finishing

time of the kth idle interval respectively.
Given an idle interval set E, we determine starting time

tij for a command oij. First, we ensure that since the last
command oi;j�1 was launched at least gi time has passed,
that is

tij � ti;j�1 þ gi: (29)

Next, we try to place the command in idle intervals rather
than busy ones, so as to mitigate the changes on those com-
mands having been arranged. There are two situations
where the command oij can be inserted into an idle interval
½esk; efk �: 1) when ti;j�1 þ gi is within the idle interval, we can
arrange the command here and set tij to ti;j�1 þ gi; 2) when
the idle interval starts later than ti;j�1 þ gi, we can also
arrange the command and set tij to esk. Thus, we have

tij ¼ ti;j�1 þ gi; esk � ti;j�1 þ gi < efk;

esk; esk > ti;j�1 þ gi:

(
(30)

There may be several idle intervals available for placing a
command. The number of choices is OðmÞ. An interesting
question is which one should we choose. Different choices
may lead to different objective values (27). Usually, the ear-
liest one leads to the highest objective value, because it
results in the smallest variation in frame interval for the cur-
rent task. Thus, we directly take the earliest one. Alterna-
tively, we may try each choice and choose the one leading
to the highest objective value. However, it is time-consum-
ing. We compare these two options via simulations and find
their performance are very close.

A new command arrangement may influence existing
ones. Suppose a command oij is inserted into an idle inter-
val ½esk; efk �, and its busy interval is ½tij; tij þ ti�. If the busy
interval is beyond the idle one, that is tij þ ti > efk , then the
new busy interval must overlap with other existing ones,

and we have to adjust some existing arrangements to avoid
such overlapping. Specifically, as illustrated in Fig. 5a, we
shift the intervals (both busy and idle) starting later than efk
by

D ¼ maxftij þ ti � efk; 0g: (31)

Thus, we have

ti0j0 þ¼ D; if ti0j0 � efk; 8i08j0: (32)

Similarly, we shift idle intervals ½esk0 ; efk0 � as follows:

½esk0 ; efk0 � ¼ ½esk0 þ D; ef
k0 þ D�; if esk0 > efk; 8k0: (33)

Once a command is arranged, the idle interval set E has
to be updated accordingly. Except the above shifting, the
idle interval ½esk; efk � becomes as follows:

½esk; efk � ¼
½esk; tij� and ½tij þ ti; e

f
k �; tij þ ti � efk;

½esk; tij�; o.w.

(
(34)

That is, as illustrated in Fig. 5b, if the new busy interval
½tij; tij þ ti� is totally within the idle interval, that is tij þ
ti � efk , then the idle interval is divided into two segments
½esk; tij� and ½tij þ ti; e

f
k �; otherwise, as illustrated in Fig. 5a,

the original idle interval is truncated and becomes ½esk; tij�.

Algorithm 4. Optimizing Scheduling Sequence

1: procedure GETSCHEDULINGORDER (mm; tt; tt0)
2: T P

i miti
3: E f½0; T �g
4: gi T=mi; 8i
5: Sort fsig in the decreasing order ofmi

6: for si in the sorted order do
7: for j 1; mi do
8: Get the first available idle interval, say ½esk; efk �
9: Compute tij via (30)
10: Update tt via (32)
11: Update E via (33) and (34)
12: end for
13: end for
14: Get & return scheduling sequence SS according to tt

15: end procedure

Fig. 5. A set of busy intervals are shown in blue, and a set of idle inter-
vals are shown in yellow. A command oij, whose busy interval is
½tij; tij þ ti� (in magenta), is inserted into an idle interval ½esk; efk �. (a) if the
busy interval is beyond the idle one, we need to shift the intervals (both
busy and idle) starting later than efk by D, and the idle interval is trun-
cated. (b) otherwise, shifting is unnecessary, but the idle interval is
divided into two.

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3825

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

We present the scheduling sequence algorithm in Algo-
rithm 4. Its inputs include mm, tt and t0t0, each of which is a
vector composed of mi, ti and ti0 respectively. ti0 is the
starting time (relative to current time) of the latest executed
command (the one before the first planned command) for
task si. It is noted that ti0 is a negative value. With these
inputs, we initialize variables (lines 2-4).

Our algorithm deals with n tasks in the decreasing order
of command amount. Our rationale is that the more com-
mands a task has, the lower its target average frame interval
gi is, and the more volatile the frame interval is. For each
task si, we determine starting time for mi commands in
turn. For each command oij, we take the earliest idle interval
available for placing the command from E, say ½esk; efk � (line
8). Then, we compute tij via (30) and update the starting
time of the commands previously arranged (lines 9-10). Let
tt denote starting time matrix composed of tij. We update tt

via (32). Fourth, we update the idle interval set E by shifting
according to (33) and removing the new busy interval
according to (34) (line 11). Finally, after all commands are
arranged, we get the scheduling sequence SS according to
the latest tt and return it (line 14).

Note that if ti are the same for all tasks, then the above
algorithm will become simpler. We can consider the whole
period as m equal-length time slots, whose length is the
average processing time per command, and each command
will be allocated to a slot. As such, the complicated situa-
tions as shown in Fig. 5 will not appear, thus line 10 in Algo-
rithm 4 is unnecessary and line 11 becomes simpler. Now,
the idle interval set Emaintains the set of idle slots, which is
initialized to include all time slots. Once a slot is selected for
a command, it is simply removed from E.

7 SIMULATION SETUP

To make our simulation more practical, we produce simula-
tion environments using trace data. In following, we present
how to collect trace data and how to produce simulation
environments.

7.1 Trace Data Collection

We use a game engine called Unity [35] to render an ani-
mated 3D scene [36] in different resolutions and trace the
processing time. We run it using Nvidia GeForce GTX 1060.
The reason why we do not use a higher-performance GPU is
that Unity cannot provide sufficient precision to trace very
short processing time. Instead, we use a medium perfor-
mance GPU to collect data and then reduce the processing
time by a factor to simulate rendering via high-performance
GPU. The factor we used is 0.3.

Ideally, we should render each frame in multiple resolu-
tions and time each rendering operation. However, imple-
menting in this way, we find it is hard to obtain the accurate
time for each rendering operation because Unity has a lot of
built-in caching and threading mechanisms. Instead, we
find empirically that the time required to render a frame is
approximately linearly related to the resolution, so we first
render the scene in a selected resolution, namely the base-
line resolution, and then scale its rendering time to obtain
the rendering time of other resolutions. In the following
simulation, the resolution candidate set is f1920�

1080; 2560� 1440; 3072� 1728; 3840� 2160g, among which
2560� 1440 is chosen as the baseline resolution. The scaling
factors for each of the four resolutions are set to 0.73, 1.0,
1.37, and 2.18 respectively. The scaling factors have been
obtained empirically, by first rendering the scene in differ-
ent resolutions independently, namely raw data, and then
dividing their median rendering time by that of the baseline
resolution. We illustrate the empirical cumulative distribu-
tion function (CDF) of the processing time in Fig. 6. The gen-
erated data has similar statistical features to the raw data.

7.2 Simulation Environment

A simulation environment consists of n tasks, each having a
set of QoS requirements and a sequence of rendering
commands.

7.2.1 QoS Requirements

As mentioned in Section 4.1, trade-offs should be consid-
ered in defining QoS requirements. Here, we present a sim-
ple approach. First, we formulate the resolution-latency
trade-off as below:

dmax � tpðrminÞ þ txðrminÞ; (35)

where tpðrÞ and txðrÞ denote the average processing time
and transmission time for resolution r respectively. Other-
wise, the latency limit dmax cannot be met. We formulate
txðrÞ ¼ r b c

B , where b is bits per pixel, c is compression ratio,
and B is bandwidth. Second, we formulate the frame rate-
latency trade-off as below:

fmin � 1

tpðrminÞ þ txðrminÞ : (36)

In this conservative estimation, we ignore the parallelism of
processing and transmitting for simplicity.

We generate QoS requirements as follows. First, we ran-
domly select a bandwidth value B, fmin, rmin from a corre-
sponding candidate set following a uniform distribution.
These candidate sets are listed in Table 1. Second, rather
than setting dmax (in ms) to a single value, we set

dmax ¼ minf80; round tpðrminÞ þ txðrminÞ
10

� �

 10þ 30g: (37)

The higher dmax is, the larger the opportunity for promoting
resolution. In Fig. 7, we show the statistics of latency limit
in our simulation. There are 1349 samples in total, the
median is 40 ms and the mean is 46.3 ms. Third, we filter

Fig. 6. The empirical CDF of the processing time samples rendered in
various resolutions. The generated data is shown in solid line, while the
raw data is shown in dash line. For every resolution except the baseline
(2560�1440) the generated data has similar statistical features with the
raw data.

3826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

the QoS requirements meeting the above conditions (35)
and (36). Parameters b and c are set as listed in Table 1.
Finally, we set hmax to 1=fmin seconds.

7.2.2 Task Assignment

Next, we simulate the task assignment and produce a set of
tasks assigned on a server, which is called a task group. We
define the computing load of a task as the portion of time
spent on processing per second. For a task, given fmin and
rmin, let L denote the computing load, and then we have

L ¼ fmin
 tpðrminÞ; (38)

The load is actually the minimum computing power
required for preset QoS. Suppose n tasks are assigned on a
server, each having bandwidth Bi, QoS requirements
ðfimin; h

i
max; r

i
min; d

i
maxÞ and load Li, then we have two con-

straints for bandwidth and load

Xn
i¼1

Bi � Bmax; and
Xn
i¼1

Li � Lmax; (39)

where Bmax and Lmax are bandwidth limit (100 Mbps in the
simulation) and load limit (1 in the simulation) respectively.
Other resources can be formulated in the same manner. For
simplicity, we assume a homogeneous setting, and thus
other resource constraints can be transformed to the limita-
tion on the number of tasks. We limit the number of tasks
between 2 and 4 since it is trivial to schedule a single task
and the total load of 5 tasks is far beyond the load limit.

We generate task groups as follows. First, we generate
possible QoS requirements (together with bandwidth) as
introduced above. Second, we generate the combinations of
those QoS requirements and filter those satisfying (39).
Here, each combination corresponds to a task group. Third,
from these task groups, we choose some to simulate based
on their total loads. Specifically, given a set of loads, i.e.,
f30%; . . . ; 100%g, for each level, we randomly select the task
groups whose loads are close to it (allowing for �1:5% fluc-
tuation). Here 30% is the lowest possible load.

7.2.3 Producing Commands

For a task, we produce a sequence of commands whose
arrival rate is higher than its required frame rate. Given the
required frame rate fmin, the arrival intervals are uniformly
distributed between 0:8

3fmin
seconds and 1:2

3fmin
seconds. We sim-

ulate the arrival of commands lasting 120 seconds. The
processing time of each command is sequentially read from
a stream of trace data, which is the concatenation of multi-
ple randomly picked segments (5000 samples per segment)
of the original trace data, as generated by the method men-
tioned in Section 7.1. This random composition of trace data
segments allows for more variations to be tested.

In addition, we simulate dynamic bandwidth. We collect
three sets of bandwidth trace data using Continuous Speed
Test Tool [37], each for one of the bandwidth candidates
(10, 20, and 30 Mbps). For each set of data, we first divide it
into 50 segments, each consisting of bandwidth samples
lasting 120 seconds, and then shift every segment of data
such that its mean value equals the designated bandwidth
(10, 20, and 30 Mbps). The instant bandwidth for each frame
to transmit is sequentially read from a randomly picked
segment.

Besides, we simplify video encoding to a short process.
The encoding time per frame is randomly chosen according
to a uniform distribution between 2 and 6 ms. The GOP
length is 64 frames. The compression ratio is 1:x, where x is
an integer value uniformly distributed in [400, 600] for
intra-coded frames and in [800, 1200] for inter-coded frames
respectively. The other parameters for the simulation envi-
ronment are set as listed in Table 1.

8 PERFORMANCE EVALUATION

We do simulations to evaluate our method: the Frame Rate
Fair scheduling with Resolution Adjustment algorithm
(FRF-RA for short). Related parameters are set as listed in
Table 2, if not stated otherwise.

We compare our method with the following classical
scheduling methods:

1) Round Robin scheduling (RR): it traverses tasks in a
cyclic way;

2) First Come First Serve scheduling (FCFS): it prefers
to first run the earliest command.

3) Shortest Remaining Time First scheduling (SRTF): it
schedules the most urgent task first. For a task, we
evaluate its urgency using a deadline, which is the
maximum tolerable frame interval after the last
schedule.

We also simulate with the shortest job scheduling, which
prefers to first run the task whose command requires the
least execution time (estimated processing time plus

TABLE 1
Parameter Setting for the Simulation Environment

Environment Parameter Value

Simulation duration (s) 120
Bits per pixel b 32
Encoding time (ms) Uniff2; 6g
GOP length (frames) 64
c for intra-coded frames 1 : Uniff400; 600g
c for inter-coded frames 1 : Uniff800; 1200g
The candidate set of fimin f18; 24; 30; 40; 50; 60g (FPS)
The candidate set of rimin f1920� 1080; 2560� 1440;

3072� 1728; 3840� 2160g
Tolerable latency dimax (ms) minf80; roundðtpðrminÞþtxðrminÞ

10 Þ

10þ 30g

The candidate set of mean
bandwidth (Mbps)

f10; 20; 30g

The candidate set of n f2; 3; 4g
Uniffa; bg denotes discrete uniform distribution between a and b.

Fig. 7. The histogram of latency limit.

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3827

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

transmission time). But we find it performs poorly and thus
omit it in the results.

In the following evaluation, each value is averaged over
50 different simulation cases. Each case is with a task assign-
ment, a segment of trace data on processing time, and a seg-
ment of trace data on bandwidth, all of which are
independently and randomly chosen. For utility and pen-
alty, we illustrate their mean values and use error bars to
represent the 95% confidence interval.

8.1 Frame Rate Fair Scheduling Algorithm

We first evaluate the frame rate fair scheduling without the
resolution adjustment algorithm.

8.1.1 Improvement of Utility

As introduced in Section 5, the objective value of our prob-
lem is the minimum utility with penalty included, that is
mini¼1...n~ui. We show this utility under various computing
loads in Fig. 8. It is observed that FRF achieves the highest
utility under almost all levels of load. The performance of
SRTF is slightly lower than that of FRF. Both RR and FCFS
perform poorly, especially under a high load. In Fig. 9, we
show the minimum utility without penalty included, that is
mini¼1...nui. It is seen that FRF achieves the highest value
under all levels of load. In addition, in Fig. 10, we show the
penalty of frame interval’s variation, that is maxi¼1...nvi. Our
method performs almost similarly to SRTF, and both of
them perform better than FCFS but worse than RR.

8.1.2 Improvement of QoS Satisfaction

As introduced in Section 5, for a problem instance, if all the
constraints (4b)-(4d) in the formulation (4) are satisfied, we
say QoS satisfaction; otherwise, we say QoS violation. In
this section, we evaluate the percentage of QoS-satisfaction
(QoS-SAT for short) cases among 50 simulation cases.

It is noted that every method can meet the resolution con-
straint (4b), but may violate others. We show the percentage

of QoS-SAT cases in Fig. 11. Our method achieves the high-
est value; in contrast, all other methods experience severe
violation. FRF scheduling satisfies the QoS requirements in
all cases even under a high load of 90%. Furthermore, from
the simulation results, we find that all the methods can
meet the latency constraint (4d) when setting the latency
limit as in (37). In this situation, all the QoS-violation cases
violate the frame interval constraint (4c).

8.2 Resolution Adjustment Algorithm

Our resolution adjustment algorithm can be combined with
any scheduling algorithm. In this section, we evaluate the
impact of the RA algorithm on all methods.

8.2.1 Improvement of Utility

We join the RA algorithm with each of the methods and
evaluate the impact on the utility. As shown in Fig. 12, our
method FRF-RA performs the best under all loads. We illus-
trate the utility gain compared to the original method in
Fig. 13. It is observed that under a load below 50% the utility
considerately increases for almost every method. Roughly
speaking, the lower the load, the higher the gain because of
more free computing power.

8.2.2 Impact on QoS Satisfaction

Next, we evaluate the impact of the RA algorithmonQoS sat-
isfaction. We illustrate the percentage of QoS-SAT cases for

TABLE 2
Parameter Setting for the Algorithms

Context Parameter Value

Formulation h ur; uh; ud i h63/128, 63/128, 1/64i
Formulation Penalty weight f 0.25

RA algo Resolution maintaining time the time to render 1024 frames

RA algo �: a threshold 0.1

FRF algo b: the weight of �fi 0.5

Fig. 8. The minimum utility with penalty included under various comput-
ing loads. (a) low load; (b) high load.

Fig. 9. The minimum utility without penalty included under various com-
puting loads. (a) low load; (b) high load.

Fig. 10. The penalty of frame interval’s variation under various comput-
ing loads.

Fig. 11. The percentage of QoS-SAT cases under various computing
loads.

3828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

eachmethodwith andwithout the RA algorithm in Fig. 14. It
is observed that the RA algorithm degrades the performance
of QoS satisfaction slightly under the high loads. This degra-
dation is the cost of the improvement in utility under the low
loads as shown in Fig. 13. It is mainly due to the trial on reso-
lution arrangements in the RA algorithm.

8.3 Ablation Study

In this section, we evaluate the effectiveness of different
design choices of our proposed algorithm.

8.3.1 Effectiveness of Optimizing Scheduling

Sequence

Recall that FRF consists of two critical issues: the weighted
max-min frame rate problem and the scheduling sequence
problem. In this section, we demonstrate that optimizing the
scheduling sequence is effective. We compare our methods
(FRF and FRF-RA) with the versions without optimizing the
scheduling sequence (FRF-wo-Order and FRF-RA-wo-
Order). In the comparison methods, instead of calling Algo-
rithm 4, we generate a scheduling sequence naively in a
round-robinway.

Fig. 15a illustrates the percentage of QoS-SAT cases, our
methods improve the percentage by up to 50 points over their
counterparts under the load of 90%. Fig. 15b illustrates the
penalty of frame interval’s variation for these methods. It is
obvious that both our methods achieve lower penalties than
their counterparts. This implies that our optimization of the
scheduling sequence is effective in smoothing frame inter-
vals. Fig. 15c illustrates the utility with penalty included, and
ourmethods achieve higher utility than their counterparts.

8.3.2 Effectiveness of Utility Function u(x)

As mentioned in Section 5.2, the traditional utility function
log ðxÞ cannot introduce sufficient penalty for performance
violation to guarantee QoS. Here, we compare log ðxÞ and

the function uðxÞ defined in (6). In order to demonstrate
their difference, we set the latency limit lower as below:

dmax ¼ minf80; round tpðrminÞ þ txðrminÞ
10

� �

 10þ 20g: (40)

Fig. 16a shows the performance of various methods with
either uðxÞ or log ðxÞ. It is observed that uðxÞ can improve
QoS satisfaction. In particular, when FRF-RA is used under
the load of 30%, taking uðxÞ satisfies the QoS requirements
in all cases; in contrast, taking log ðxÞ only satisfies the QoS
requirements in 86% cases.

In addition, it is noticed that in the resolution adjustment
algorithm a convergence condition plays an important role
in satisfying the QoS requirements, that is the evaluation of
QoS constraints (line 16 in Algorithm 1). Thus, we remove
this convergence condition and compare the performance of
uðxÞ and log ðxÞ again. In this situation, we set the latency
limit as in (37). Fig. 16b illustrates the results. It is observed
that log ðxÞ is extremely worse than uðxÞ in meeting the QoS
requirements. These simulation results are consistent with
our motivation for designing the utility function.

Fig. 12. The minimum utility with penalty included under various comput-
ing loads when joining the RA algorithm with each of the methods. (a)
low load; (b) high load.

Fig. 13. The utility gain brought by joining the RA algorithm with each of
the methods.

Fig. 14. The percentage of QoS-SAT cases with and without the resolu-
tion adjustment algorithm.

Fig. 15. The comparison of our methods with the versions without opti-
mizing scheduling sequence. (a) the percentage of QoS-SAT cases;
(b) penalty; (c) utility.

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3829

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

8.3.3 Effectiveness of Accumulating Qi in FRF

As mentioned in Section 6.2.1, in Algorithm 2, we get mi by
accumulating Qi in Di and rounding down Di, rather than
directly rounding down Qi. Here, we compare these two
operations. The results are illustrated in Fig. 17. The com-
parison methods (FRF-wo-Acc and FRF-RA-wo-Acc) per-
form worse than their counterparts under the high loads
above 70%, both in terms of QoS-SAT and utility.

8.4 Evaluation of ud
In this section, we evaluate the impact of the weight ud on
performance. We vary ud between three values: 0, 1/64 and
1/8, and let ur ¼ uh ¼ ð1� udÞ=2. As shown in Fig. 18a, as ud
increases from 0 to 1/8, the utility gain brought by the RA
algorithm decreases. The reason is that promoting resolu-
tion increases latency and is restrained by raising the weight
on latency. We also illustrate the percentage of QoS-SAT

cases in Fig. 18b. It is observed that as ud increases, the per-
centage value increases slightly.

8.5 Evaluation of ur
In this section, we evaluate the impact of the weight ur on
performance. We vary ur between three different values:
2=3ð1� udÞ, 1=2ð1� udÞ and 1=3ð1� udÞ, and let ud ¼ 1=64
and uh ¼ 1� ud � ur. As shown in Fig. 19a, as ur increases,
the utility gain brought by the RA algorithm increases. The
reason is that when the resolution has a higher weight on
the total utility, the benefit brought by elevating resolution
is larger than the loss caused by increased latency. We also
illustrate the percentage of QoS-SAT cases in Fig. 19b. It is
observed that the percentage values in all three situations
are almost close.

8.6 Evaluation of �

Recall that in the RA algorithm one of the convergence con-
ditions is that the drop of the utility relative to the best value

Fig. 16. The performance comparison of the utility function uðxÞ defined
in (6) and log ðxÞ. (a) setting the latency limit as in (40); (b) setting the
latency limit as in (37), and removing the convergence condition of the
evaluation on QoS constraints from the RA (line 16 in Algorithm 1).

Fig. 17. The comparison of our methods with the versions without accu-
mulating Qi. (a) the percentage of QoS-SATcases; (b) utility.

Fig. 18. The performance when varying ud. (a) the utility gain of the RA
algorithm; (b) the percentage of QoS-SATcases.

Fig. 19. The performance when varying ur. (a) the utility gain of the RA
algorithm; (b) the percentage of QoS-SATcases.

3830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

found in history exceeds a threshold (i.e., �). We evaluate
the impact of the threshold on performance by varying its
value. In Fig. 20, we illustrate the results under four levels
of load from 30% to 60%, since under a higher load there is
no extra computing power to improve resolution. It is
observed that when � is zero, the utility under a load of 30%
is very low, although there is abundant computing power
in that situation. As � increases, utility increases. But further
increasing � may decrease utility due to trying out bad
arrangements. Thus, in our simulation, we set � to 0.1.

9 CONCLUSION

In this paper, we investigate the QoS-aware rendering task
scheduling problem in edge computing, that is to make
real-time decisions on which task to execute in which reso-
lution such that user requirements are met and user perfor-
mance is maximized simultaneously. We formulate the
problem into a QoS constrained max-min utility problem.
We propose an efficient scheduling algorithm to solve the
problem, which consists of a resolution adjustment algo-
rithm and a frame rate fair scheduling algorithm. Our simu-
lations based on actual rendering data demonstrate that our
method can improve utility and QoS satisfaction compared
with competing QoS-oblivious methods.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1628–1656, Jul.–Sep. 2017.

[2] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward
edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584–1607, Aug.
2019.

[3] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Archi-
tecture and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21,
Jul./Aug. 2013.

[4] OnLive, 2022. [Online]. Available: https://en.wikipedia.org/
wiki/OnLive

[5] GeForce Now, 2022. [Online]. Available: https://www.nvidia.
com/en-us/geforce-now/

[6] CloudXR, 2022. [Online]. Available: https://www.nvidia.com/
en-us/design-visualization/solutions/cloud-xr/

[7] X. Zhang et al., “Improving cloud gaming experience through
mobile edge computing,” IEEE Wireless Commun., vol. 26, no. 4,
pp. 178–183, Aug. 2019.

[8] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci, and A. El Saddik,
“Edge caching and computing in 5G for mobile AR/VR and tactile
internet,” IEEE MultiMedia, vol. 26, no. 1, pp. 21–30, Jan.–Mar.
2019.

[9] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in
Proc. ACM Conf. SIGCOMM, 2014, pp. 455–466.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 323–336.

[11] S. Wang, X. Li, Q. Z. Sheng, R. Ruiz, J. Zhang, and A. Beheshti,
“Multi-queue request scheduling for profit maximization in
IaaS clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11,
pp. 2838–2851, Nov. 2021.

[12] J. Zhu, X. Li, R. Ruiz, W. Li, H. Huang, and A. Y. Zomaya,
“Scheduling periodical multi-stage jobs with fuzziness to elastic
cloud resources,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 12,
pp. 2819–2833, Dec. 2020.

[13] J. Zhu, X. Li, R. Ruiz, and X. Xu, “Scheduling stochastic multi-
stage jobs to elastic hybrid cloud resources,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 6, pp. 1401–1415, Jun. 2018.

[14] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient
dependent task offloading for multiple applications in MEC-cloud
system,” IEEE Trans. Mobile Comput., to be published, doi: 10.1109/
TMC.2021.3119200.

[15] S. Yue et al., “TODG: Distributed task offloading with delay guar-
antees for edge computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 7, pp. 1650–1665, Jul. 2022.

[16] W. Liu, J. Cao, L. Yang, L. Xu, X. Qiu, and J. Li, “AppBooster:
Boosting the performance of interactive mobile applications with
computation offloading and parameter tuning,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 28, no. 6, pp. 1593–1606, Jun. 2017.

[17] C. Rea~no, F. Silla, D. S. Nikolopoulos, and B. Varghese, “Intra-node
memory safe GPU co-scheduling,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 5, pp. 1089–1102,May 2018.

[18] Y. Zhang, P. Qu, J. Cihang, andW. Zheng, “A cloud gaming system
based on user-level virtualization and its resource scheduling,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1239–1252, May
2016.

[19] Z. Qi, J. Yao, C. Zhang, M. Yu, Z. Yang, and H. Guan, “VGRIS: Vir-
tualized GPU resource isolation and scheduling in cloud gaming,”
ACM Trans. Archit. Code Optim., vol. 11, no. 2, Jul. 2014, Art. no. 17.

[20] C. Zhang, J. Yao, Z. Qi, M. Yu, and H. Guan, “vGASA: Adaptive
scheduling algorithm of virtualized GPU resource in cloud
gaming,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11,
pp. 3036–3045, Nov. 2014.

[21] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M.
Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Int. Group Data Commun., 2019,
pp. 270–288.

[22] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“GRAPHENE: Packing and dependency-aware scheduling for
data-parallel clusters,” in Proc. 12th USENIX Conf. Oper. Syst. Des.
Implementation, 2016, pp. 81–97.

[23] Stadia, 2022. [Online]. Available: https://stadia.google.com/
[24] M. Viitanen, J. Vanne, T. D. H€am€al€ainen, and A. Kulmala, “Low

latency edge rendering scheme for interactive 360 degree virtual
reality gaming,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.,
2018, pp. 1557–1560.

[25] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in Proc. 25th Annu. Int.
Conf. Mobile Comput. Netw., 2019, Art. no. 25.

[26] L. Liu et al., “Cutting the cord: Designing a high-quality unteth-
ered VR system with low latency remote rendering,” in Proc. 16th
Annu. Int. Conf. Mobile Syst. Appl. Serv., 2018, pp. 68–80.

[27] X. Liao et al., “LiveRender: A cloud gaming system based on com-
pressed graphics streaming,” IEEE/ACM Trans. Netw., vol. 24,
no. 4, pp. 2128–2139, Aug. 2016.

[28] Augmented and virtual reality: The first wave of 5G killer apps, 2017.
[Online]. Available: https://www.qualcomm.com/media/docum
ents/files/augmented-and-virtual-reality-the-first-wave-of-5g-killer-
apps.pdf

[29] E. Bastug, M. Bennis, M. Medard, and M. Debbah, “Toward
interconnected virtual reality: Opportunities, challenges, and
enablers,” IEEE Commun. Mag., vol. 55, no. 6, pp. 110–117,
Jun. 2017.

[30] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource
management in cloud networking using economic analysis and
pricing models: A survey,” IEEE Commun. Surveys Tuts., vol. 19,
no. 2, pp. 954–1001, Apr.–Jun. 2017.

[31] Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient computing resource
sharing for mobile edge-cloud computing networks,” IEEE/ACM
Trans. Netw., vol. 28, no. 3, pp. 1227–1240, Jun. 2020.

[32] R. Xie, J. Fang, J. Yao, X. Jia, and K. Wu, “Sharing-aware task off-
loading of remote rendering for interactive applications in mobile
edge computing,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2021.3127345.

Fig. 20. The utility versus the threshold �. Each line corresponds to a
level of load. Some.

XIE ETAL.: QOS-AWARE SCHEDULING OF REMOTE RENDERING FOR INTERACTIVE MULTIMEDIA APPLICATIONS IN EDGE... 3831

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/OnLive
https://en.wikipedia.org/wiki/OnLive
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/design-visualization/solutions/cloud-xr/
https://www.nvidia.com/en-us/design-visualization/solutions/cloud-xr/
http://dx.doi.org/10.1109/TMC.2021.3119200
http://dx.doi.org/10.1109/TMC.2021.3119200
https://stadia.google.com/
https://www.qualcomm.com/media/documents/files/augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf
https://www.qualcomm.com/media/documents/files/augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf
https://www.qualcomm.com/media/documents/files/augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf
http://dx.doi.org/10.1109/TCC.2021.3127345

[33] Y. T. Hou, H. H.-Y. Tzeng, and S. S. Panwar, “A generalized max-
min rate allocation policy and its distributed implementation
using the ABR flow control mechanism,” in Proc. IEEE Conf. Com-
put. Commun., 1998, pp. 1366–1375.

[34] B. Radunovic and J.-Y. Le Boudec, “A unified framework for max-
min and min-max fairness with applications,” IEEE/ACM Trans.
Netw., vol. 15, no. 5, pp. 1073–1083, Oct. 2007.

[35] Unity, 2022. [Online]. Available: https://unity.com/
[36] ArchVizPRO interior, vol. 7, 2020. [Online]. Available: https://

assetstore.unity.com/packages/3d/environments/urban/archvizpro-
interior-vol-7-155448

[37] Continuous speed test tool, 2022. [Online]. Available: http://
startrinity.com/InternetQuality/ContinuousBandwidthTester.aspx

Ruitao Xie received the BEng degree from the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2008, and the PhD
degree in computer science from the City Univer-
sity of Hong Kong, Hong Kong, in 2014. She is
currently an assistant professor with the College
of Computer Science and Software Engineering,
Shenzhen University. Her research interests
include edge computing, AI networking, cloud
computing, and distributed systems.

Junhong Fang received the BEng degree in
computer science from the China University of
Mining and Technology, Xuzhou, China, in 2020.
He is currently working toward the graduate
degree in the College of Computer Science and
Software Engineering, Shenzhen University,
Shenzhen, China.

Junmei Yao received theBEngandMEngdegrees
from the Harbin Institute of Technology, Harbin,
China, in 2003 and 2005, respectively, and the PhD
degree in computer science from the Hong Kong
Polytechnic University, Hong Kong, in 2016. She is
currently an assistant professor with the College of
Computer Science and Software Engineering,
Shenzhen University, China. Her research interests
include wireless networks, wireless communica-
tions, andmobile computing.

Kai Liu (Senior Member, IEEE) received the PhD
degree in computer science from the City Univer-
sity of Hong Kong, Hong Kong, in 2011. From
December 2010 to May 2011, he was a visiting
scholar with the Department of Computer Sci-
ence, University of Virginia, USA. From 2011 to
2014, he was a postdoctoral fellow with Singa-
pore Nanyang Technological University, City Uni-
versity of Hong Kong, and Hong Kong Baptist
University. He is currently a professor with the
College of Computer Science, Chongqing Univer-

sity, China. His research interests include Internet of vehicles, mobile
edge computing, pervasive computing, and intelligent transportation
systems.

Xiaohua Jia (Fellow, IEEE) received the BSc and
MEng degrees from the University of Science
and Technology of China, Hefei, China, in 1984
and 1987, respectively, and the DSc degree in
information science from the University of Tokyo,
Tokyo, Japan, in 1991. He is currently chair pro-
fessor with the Department of Computer Science,
City University of Hong Kong. His research inter-
ests include cloud computing and distributed sys-
tems, data security and privacy, computer
networks, and mobile computing. He is an editor

of the IEEE Transactions on Computers (2021 – present), IEEE Internet
of Things (2013-2018), IEEE Transactions on Parallel and Distributed
Systems (2006-2009), Journal of World Wide Web, Journal of Combina-
torial Optimization, etc. He is the general chair of ACM MobiHoc 2008,
TPC co-chair of IEEE GlobeCom 2010 – Ad Hoc and Sensor Networking
Symp, area-chair of IEEE INFOCOM 2015-2017, chair of ACM ICN
2019, and chair of IEEE ICDCS 2023. He is a fellow of the IEEE (Com-
puter Society) and distinguished member of the ACM.

Kaishun Wu received the PhD degree in com-
puter science and engineering from HKUST,
Hong Kong, in 2011. After that, he worked as a
research assistant professor with HKUST. In
2013, he joined SZU as a distinguished professor.
He has co-authored two books and published
more than 100 high quality research papers in
international leading journals and primer confer-
ences, like the IEEE Transactions on Mobile
Computing, IEEE Transactions on Parallel and
Distributed Systems, ACM MobiCom, IEEE

INFOCOM. He is the inventor of six US and more than 90 Chinese pend-
ing patent. He received 2012 Hong Kong Young Scientist Award, 2014
Hong Kong ICT awards: Best Innovation and 2014 IEEE ComSoc Asia-
Pacific Outstanding Young Researcher Award. He is an IET fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 09,2022 at 09:18:04 UTC from IEEE Xplore. Restrictions apply.

https://unity.com/
https://assetstore.unity.com/packages/3d/environments/urban/archvizpro-interior-vol-7-155448
https://assetstore.unity.com/packages/3d/environments/urban/archvizpro-interior-vol-7-155448
https://assetstore.unity.com/packages/3d/environments/urban/archvizpro-interior-vol-7-155448
http://startrinity.com/InternetQuality/ContinuousBandwidthTester.aspx
http://startrinity.com/InternetQuality/ContinuousBandwidthTester.aspx

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

