
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

ET2FA: A Hybrid Heuristic Algorithm
for Deadline-constrained Workflow

Scheduling in Cloud
Zaixing Sun, Boyu Zhang, Chonglin Gu, Ruitao Xie, Bin Qian, and Hejiao Huang

Abstract—Cloud computing is an emerging computational infrastructure for cost-efficient workflow execution that provides flexible and
dynamically scalable computing resources at pay-as-you-go pricing. Workflow scheduling, as a typical NP-Complete problem, is one
of the major issues in cloud computing. However, in the cloud scenario with unlimited resources, how to generate an efficient and
economical workflow scheduling scheme under the deadline constraint is still an extraordinary challenge. In this paper, we propose a
hybrid heuristic algorithm called enhanced task type first algorithm (ET2FA) to solve deadline-constrained workflow scheduling in cloud
with new features such as hibernation and per-second billing. The objectives to be minimized include the total cost and total idle rate.
ET2FA involves three phases: 1) Task type first algorithm, which schedules tasks based on topological level and task types, and utilizes
a compact-scheduling-condition based VM selection method to assign each task. 2) Delay operation based on block structure, which
further optimizes total cost and total idle rate based on block structure properties. 3) Instance hibernate scheduling heuristic, which
sets an instance to hibernate if idle for a duration. Extensive simulation experiments based on seven well-known real-world workflow
applications show that ET2FA delivers better performance in comparison to the state-of-the-art algorithms.

Index Terms—Workflow scheduling, cloud computing, deadline constraint, directed acyclic graph, hibernate instance

✦

1 INTRODUCTION

C LOUD computing is emerging as a primary computing
paradigm that is researched, developed, and deployed

by academia, industry and government in recent years
[1], [2]. In a cloud platform, the computing resources are
heterogeneous, elastic, and almost unlimited, which can
be leased at any time in a pay-as-you-go service model
[3]. Recently, some cloud service platforms, such as AWS
EC2, Google Cloud, Microsoft Azure, etc., have introduced
instance hibernate (suspended or deallocated) function in a
lifecycle of an instance, which can save the instance booting
time and rental expenses. In addition, they also support per-
second billing, which brings customers closer to being billed
ONLY for the time when resources are actually used. These
two measures will enable customers to make full use of the
elasticity of cloud computing to save costs.

Workflow has been proved to be an efficient and popular
paradigm to model various scientific computing problems
with massive amounts of data and complex constraints in
various fields, such as astronomy, bioinformatics, and phys-

• Z. Sun, C. Gu and H. Huang, are with the School of Computer Science
and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen
518000, China, and also with Guangdong Provincial Key Laboratory of
Novel Security Intelligence Technologies, Shenzhen 518000, China.
E-mail: szx 1010@stu.hit.edu.cn, {guchonglin, huanghejiao}@hit.edu.cn.

• B. Zhang is with School of Artificial Intelligence, Changchun University
of Science and Technology, Changchun 130000, China.
E-mail: 2583392480@qq.com.

• R. Xie is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518000, China.
E-mail: drtxie@gmail.com.

• B. Qian is with the School of Information Engineering and Automation,
Kunming University of Science and Technology, Kunming 650500, China.
E-mail: bin.qian@vip.163.com.

Manuscript received *; revised *; accepted *. (Corresponding author:
Chonglin Gu.)

ics [3], [4]. It is usually described by directed acyclic graph
(DAG), in which nodes represent application tasks, and
directed edges represent inter-task data dependencies [5].
Based on its powerful computing capability, the infrastruc-
ture as a service (IaaS) cloud offers users a new utility-based
platform to execute large scale workflows [6]. Customers
can execute their workflows by renting resources from cloud
service providers. The essence of workflow scheduling is to
establish a set of effective mapping relationships from tasks
to virtual machines (VMs) in cloud to minimize makespan
or monetary cost under the constraints of Quality of Service
(QoS, such as deadline), so as to achieve efficient utilization
and balanced allocation of system resources.

Workflow scheduling makes the following decisions or
trade-offs: (1) Determining the scheduling sequence of tasks.
Workflow tasks contain dependency constraints. Although
tasks can be divided into topological levels and scheduled
in turn according to the levels, the scheduling of tasks in
the same level can be reduced to the bag-of-tasks schedul-
ing problem, which is still NP-Hard. (2) Selecting VM. To
execute a workflow at low cost, the low-cost VM will be
selected. In this way, the task takes long time to execute,
which may result in a deadline miss. To finish the workflow
as early as possible, the VM with high computing power
will be selected. In this way, the task has short execution
time, and it is easy to meet deadline, but with high cost.
In addition, when more VMs are used, tasks are scattered
over VMs, increasing data transmission time among tasks
and the idle time of VMs. Therefore, for VM selection, we
should not only choose the appropriate VM type to meet
deadline with low cost, but also avoid using too many VMs
in order to reduce data transmission time and idle time.

Since workflow scheduling problem is NP-Complete

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

[7]–[9], its solution methods [10] mainly include heuristic
algorithms [7], [11]–[14], meta-heuristic algorithms [4], [15]
and artificial intelligence algorithms [16], [17]. Heuristic
algorithms depend on the nature of the problem, and are de-
signed according to the characteristics of the problem. Meta-
heuristic algorithms and artificial intelligence algorithms are
usually independent of the problem, and perform iterative
optimization through a certain evolution mechanism [18].
When selecting resources for tasks, these algorithms usually
randomly select resources without guidance. The existing
algorithms usually need to adjust the control parameters
manually, and run for a long time due to their slow con-
vergence speed. Moreover, when the execution scenario has
new features, the original scheduling algorithm is no longer
applicable. In this paper, we consider a cloud environment
with new features of hibernation and per-second billing.

Aiming at the significance of workflow scheduling in
cloud and the deficiency of current algorithms, this paper
proposes a hybrid heuristic algorithm called enhanced task
type first algorithm (ET2FA) for deadline-constrained work-
flow scheduling in cloud to minimize the total cost and total
idle rate. In cloud, the billing method is per-second billing
with a minimum of 60 seconds. The heterogeneous VM
instances are acquired and released dynamically, and they
can also be hibernated. VMs with different configurations
have different bandwidths. The main contributions of this
paper are as follows:

• A cloud-based workflow scheduling model is established,
which rents VM instances in a per-second mode while
considering hibernating the idle VMs at a much lower
price.
• We creatively propose a task scheduling algorithm based

on topological level. Within each level, we prioritize the
tasks according to the workflow structure. When assign-
ing each task, we devise a compact-scheduling-condition
based VM selection method, which can reduce data trans-
mission time and idle time.
• We theoretically prove a determination condition that can

simultaneously save cost and improve resource utiliza-
tion by analyzing the property of the block structure (a
sequence of tasks are continuously executed without idle
intervals on the same VM), and then propose a delay
operation based on block structure to further optimize
total cost and total idle rate.
• By simulation experiments with seven well-known real-

world workflow applications, the proposed algorithm is
verified to outperform five baseline algorithms (including
two heuristic algorithms, two meta-heuristic algorithms
and a reinforcement learning algorithm), in total cost, total
idle rate and running time of algorithms.

A preliminary result of our work was presented at the
conference IEEE CLOUD 2021 [19]. Compared with previ-
ous work, this paper includes significant new contents: 1)
A new cloud resource model is considered, which includes
instance hibernation mode and per-second billing with a
minimum of 60 seconds, and does not limit the number
of instances. 2) During VM selection for each task, we
preferentially select the VMs with running tasks at current
topological level and then its upper level. This can make the
scheduling more compact. 3) To further optimize total cost

and total idle rate, delay operation based on block structure
is proposed by analyzing the property of block structures.
4) Instance hibernate scheduling heuristic is designed to
hibernate instance if idle for a duration.

The rest of this paper is organized as follows. Section
2 reviews the related work. Section 3 presents the cloud
workflow scheduling model, including resource model,
workflow application model, deadline model and workflow
scheduling. Section 4 provides details of ET2FA to address
this problem. Section 5 presents the experimentation and
evaluation. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 Workflow Scheduling Problem in Cloud

A substantial number of research efforts have been devoted
towards solving the cost and maximum completion time
issues of workflow scheduling. According to different ex-
ecution scenarios, the workflow scheduling problem has
different characteristics. The execution scenarios (resource
models) are evolving from homogeneous single-core proces-
sors to multicore processors with heterogeneous resources.

In homogeneous resource environment, all computing
resources have the same configuration of CPU, memory,
etc. Byun et al. [20] proposed a partitioned balanced time
scheduling algorithm, which estimates the minimum num-
ber of computing hosts required to execute a workflow
under user deadline, minimizing the financial cost during
the entire application lifetime. Wu et al. [11] proposed a
two-stage method minimal slack time and minimal distance
algorithm and VM instance hour minimization for deadline
constrained DAG applications deployed on cloud.

In heterogeneous scenes, Abrishami et al. [12] proposed
IaaS Cloud Partial Critical Paths (IC-PCP) for minimizing
the cost of workflow execution under deadline constraints.
IC-PCP constructed critical paths of the service processes,
and the tasks on each critical path are assigned to a cheapest
VM that satisfies the deadline constraints. Rodriguez et al.
[4] considered VM boot time and developed particle swarm
optimization (PSO) to minimize overall workflow execu-
tion cost while meeting the deadline constraint in clouds.
However, they mainly designed the resource provisioning
and scheduling strategy, and there was no improvement on
the PSO. Sahni et al. [13] considered the VM performance
variability and instance acquisition delay, and proposed
Just-in-Time (JIT-C) algorithm to minimize cost of workflow
execution under deadline constraints. In JIT-C algorithm,
tasks with serial characteristics are merged, which reduces
the cost of data transmission and the complexity of problem
solving to a certain extent. Xiao et al. [5] proposed a coopera-
tive coevolution genetic programming (CCGP) algorithm to
minimize the makespan. The CCGP algorithm automatically
learns two high-level heuristics through genetic program-
ming. Song et al. [1] broke the tradition of atomic tasks and
devised a new workflow scheduling model, which modeled
the heavy tasks as composite tasks, and assigned multiple
service instances to execute a composite task. To solve this
problem, they proposed a nested particle swarm optimiza-
tion algorithm to optimize the scheduling order of tasks and
instances respectively. Domanal et al. [21] considered real-
time workflow scheduling and presented a novel hybrid

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

bio-inspired algorithm by integrating the modified particle
swarm optimization and modified cat swarm optimization
algorithm to the efficient and rapid allocation of resources
to the clients. Their algorithm not only reduces the average
response time but also increases the resource utilization by
approximately 12%. Qin et al. [22] proposed a knowledge-
based adaptive discrete water wave optimization (KAD-
WWO) algorithm to solve the cost-minimization and dead-
line constraint cloud workflow scheduling problem.

With the development of multicore processor technol-
ogy, Deldari et al. [23] established a heterogeneous com-
puting resource model, in which each multicore processor
consists of several homogeneous cores, and proposed a
cluster combining algorithm, to minimize the execution cost
while meeting the deadline constraints submitted by users.
Zhu et al. [24] considered both the multiprogrammed use
of computing resources on heterogeneous IaaS platforms
and the multi-resource demands of tasks, and proposed a
new list-scheduling framework. To make full use of cloud
resources, this framework can efficiently pack tasks onto
VMs and support the dynamic expansion of VMs in the
scheduling process. Based on this framework, a deadline-
constrained workflow scheduling algorithm was proposed
to minimize the cost of workflow execution.

Most of the aforementioned studies focus on conven-
tional cloud environment, and a few studies involve VM
boot time. In fact, some characteristics, such as data trans-
mission and startup time, can’t be ignored. This paper
studies a more realistic scenario, which considers hetero-
geneous resources with unlimited number, VM boot time,
VM bandwidth and hibernate function, etc.

2.2 Workflow Scheduling Algorithm in Cloud
The existing heuristic algorithms for the cloud workflow
scheduling mainly include the following: Heterogeneous
Earliest Finish Time (HEFT) [7], [25], Load Balancing Tech-
niques [26], Priority or Deadline Based Scheduling Algo-
rithm [27] and other algorithms [11]–[14]. Heuristic algo-
rithms are suitable for problems with rules to follow, such
as inter-task data dependencies in workflow.

Due to its advantages in convergence speed and accu-
racy, Meta-heuristic algorithm is one of the common strate-
gies to solve NP-Hard optimization problems. At present,
the common meta-heuristic algorithms for solving work-
flow scheduling problems mainly include Particle Swarm
Optimization [4], [28], Ant Colony Optimization [6], [15],
[29], HYBRID bio-Inspired algorithm [21], Squirrel Search
Algorithm [30], Genetic Algorithm [31], etc. These algo-
rithms overcome the shortcomings of traditional analytical
algorithms to a great extent, and provide new ideas and
means for solving scheduling problems. Further research on
this kind of technology and its better application in solv-
ing scheduling problems will undoubtedly have a positive
impact on the development of scheduling technology and
other constrained combinatorial optimization problems.

Artificial intelligence algorithm has also been studied
in the field of workflow scheduling in cloud environment in
the last few years, such as Q-Learning [16], [32], Artificial
Neural Network [33], Bayesian Network [17] and so on.
For example, Zhao et al. [16] proposed QL-HEFT which
combines Q-Learning with HEFT. The QL-HEFT utilizes

upward ranking values from HEFT which are used for
reward in Q-learning process. The algorithm sorts the tasks
according to the convergent Q-table, and assigns the tasks
to the VMs based on the earliest finish time strategy.

Theoretically, the widespread application and develop-
ment of workflow scheduling technology depends not only
on the improvement and development of various heuristic
algorithm technologies based on natural laws, but also on
the deep understanding and research of scheduling domain
knowledge, so as to organically combine the algorithm
and prior domain knowledge of the problem to achieve
global optimization. Therefore, it is of great significance to
study the scheduling problem theoretically for developing
optimization technology and solving complex combinatorial
optimization problems.

3 CLOUD WORKFLOW SCHEDULING MODEL

In this section, the resource model and workflow application
model are described, and then the workflow scheduling
model is established. To facilitate reading, the symbols and
variables commonly used in this paper are listed in Table 1.

Table 1
Symbols and Meanings.

Symbol Definition

Constants
vPh The instance vh’s type.
vUh The instance vh’s processing capacity.
vMh The instance vh’s per-unit price.
ai A task in the DAG.
wi The computation of task ai.
dij The amount of data to be transferred from task ai

to task aj .
Suc(ai) The sets of all direct successors of task ai.
Pre(ai) The sets of all direct predecessors of task ai.

Variables
tEih The execution time of a task ai on VM vh.
vAi The VM where task ai is executed.
tSi The actual start time of task ai.
tFi The actual finish time of task ai.
t̄Sh The lease start time of instance vh.
t̄Eh The lease end time of instance vh.
t̃Aih The available start time of task ai on VM vh.
V C The VM set with running tasks at current topologi-

cal level.
V P The VM set with running tasks at immediately

preceding topological level.

3.1 Resource Model

3.1.1 Resource Configurations
Cloud service providers deliver computing resources to
customers at different prices via heterogeneous VM in-
stances with various of CPU, storage, and network band-
width, without limiting the number of VMs. Let P =
{pk|k = 1, 2, · · · ,m} represent the set of all instance types,
where m is the total number of types. VM instances have
the following characteristics:

• U = {U(pk)|pk ∈ P} is the set of processing capacity
of CPU in Giga Floating Point Operations Per Second
(GFLOPS, a widely used metric [4], [13], [32]), where
U(pk) is the processing capacity of instance type pk. The

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

higher the processing capacity of CPU, the shorter the
execution time of its task.
• B = {B(pk, ph)|pk, ph ∈ P} is the set of communication

bandwidth between different instance types. B(pk, ph) is
the communication bandwidth between instance types pk
and ph, which depends on the smaller bandwidth of the
two instances (denoted as b(pk) and b(ph), respectively)
[34], [35]. That is, B(pk, ph) = min {b(pk), b(ph)}.
• M = {M(pk)|pk ∈ P} is the set of leasing prices, where
M(pk) is the per-unit price of instance type pk.

Let V = {v1, v2, · · · , |V |} represent the VM instances leased
by a customer, where |V | is the total number of VMs. vPh =
pk represents instance vh’s type. vUh = U(vPh) represents
instance vh’s processing capacity. vMh = M(vPh) represents
instance vh’s per-unit price.

The pricing model is based on a pay-as-you-go billing
scheme and the users are charged for the number of time
intervals for the instances they lease, even if the last time
interval is not fully used. The time interval is the minimum
billing period. It is determined by the service policy of a
cloud service platform. In this paper, the time interval is 1
second with a mandatory-minimum of 60 seconds whenever
an instance switches to a new state. For example, the billing
time of the period [t1, t2], t1 < t2 is,

g(t1, t2) = ⌈max {(t2 − t1), 60}⌉ . (1)

In reality, cloud providers charge storage services for
storing data files according to the allocated capacity, but
these costs are not accounted for in the resource model
since they are independent of the scheduling algorithms.
It is assumed that instances have sufficient RAM for tasks
and the CPU capacity is considered as the only factor that
determines the execution time of tasks.
3.1.2 Instance Lifecycle
Fig. 1 illustrates the diagrammatic sketch of the uptime
segmentation of instance lifecycle. According to the rental
unit price, it can be divided into the following two states:

Stopped Terminate

Time period to be billed

Pending Running Running

t0 t1 t2 t4 t5 t6

M I

Active state
M H

Hibernation state
M I

Active state

t3 (s)

Cold startup
Warm startup
Stopping

Fig. 1. An illustration of the uptime segmentation of instance lifecycle.

1) Active state. When an instance is created, the cloud ser-
vice provider prepares the operating system and application
server specified by user. This time period is called pending
state and not billed. Then the user launches the instance
and deploys the execution environment of the workflow.
This process is called cold startup, and when the user
launches an existing (and stopped) instance, this process is
called warm startup. After startup, the instance enters the
running state and the task can be executed. M I is the per-
unit price of the instance in active state (cold/warm startup
and running), as shown in Fig. 1.

2) Hibernation state. When hibernating instance, it enters
stopping state, which is the process of transition from run-
ning state to hibernation state, and then enters stopped state.
When an instance enters hibernation state, its contents in the
instance memory (RAM) will be saved to Elastic Block Store
(EBS) root volume. Only EBS volumes and elastic IP are

charged in the hibernation state1. If needed, an instance can
be released (terminated) directly in the running state and no
longer charged. MH is the per-unit price of the instance in
hibernation state (stopping and stopped), as shown in Fig. 1.

In a life cycle of an instance, cold startup time (t1−t0),
warm startup time (t5−t4) and stopping time (t3−t2) are
generally known, while running time and stopped time are
determined by the scheduling time of tasks. It is worth
noting that a new instance billing period will start again
when the state is switched, with 60s minimum charge. Thus,
the rental cost of the instance in Fig. 1 is as follows:

cost =
(
g(t0, t2) + g(t4, t6)

)
M I + g(t2, t4)M

H . (2)

3.2 Workflow Application Model

Workflow is represented by directed acyclic graph (DAG)
G = (A,W,E,D), which are described as follows:

• A = {ai|i = 1, 2, · · · , n} is the set of tasks, where ai is a
task in the DAG and n is the total number of tasks.
• W = {wi|i ∈ A} is the set of weights on tasks, which

represents the computation of tasks in giga floating point
operations (GFLOP). tEih =

wi

vUh
is the execution time of a

task ai on VM vh.
• E = {eij = (ai, aj)|ai, aj ∈ A; i < j} is the set of depen-

dencies between tasks. Dependency (ai, aj) refers to a
precedence constraint between tasks ai and aj . The sets
of all direct successors and predecessors of task ai are
denoted as Suc(ai) = {aj |(ai, aj) ∈ E} and Pre(ai) =
{aj |(aj , ai) ∈ E}, respectively.
• D = {dij |eij ∈ E} is the set of transmitted data, where
dij represents the amount of data to be transferred from

task ai to task aj , in GFLOP. Let tkhij =
dij

B(vPk , v
P
h)

represent the communication time between task ai and
task aj , where task ai is executed on VM vk and task aj is
executed on VM vh. When k = h, the transmission time
on the same VM is 0.

A sample workflow is shown in Fig. 2(a). Each node rep-
resents a task and each edges represents the dependencies
between tasks. The configurations of the nodes and edges
are shown in Table 2.

a5a5a4a4a3a3a2a2

a1a1

a8a8a7a7a6a6

a9a9

(a) Sample DAG with 9 tasks.

0 500 1000 1500 2000 Time/s

v0(p3)

v1(p4)

V
M

a5_8 a3 a6 a9

a1 a2 a4 a7 Booting
Hibernate

(b) Gantt chart of corresponding task scheduling.

Fig. 2. A simple workflow and its corresponding schedule. In (a) each
node represents a task and the edges show the dependencies between
tasks. In (b) each task is mapped onto one available VM, and the
dependencies between tasks are all satisfied.

1. Since this paper does not consider the memory constraint, only the
cost of elastic IP is considered in the hibernation state.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Table 2
The Configurations of Nodes and Edges in Fig. 2(a).

A W E D E D

a1 120204 (a1,a2) 443 (a6,a9) 1359
a2 176974 (a1,a3) 137 (a7,a9) 1034
a3 6943 (a1,a4) 1478 (a8,a9) 157
a4 117952 (a1,a5) 466
a5 34835 (a2,a6) 733
a6 74550 (a3,a6) 1005
a7 1777628 (a3,a7) 6943
a8 34526 (a4,a7) 143
a9 136919 (a5,a8) 1151

3.3 Deadline Model

The deadline of workflow is an important constraint for the
workflow scheduling problem. If the deadline is relaxed,
there is enough slack time to accommodate for the VM
acquisition delay and the performance variation. A com-
prehensive evaluation requires performance analysis on all
possible deadlines. Deadline is usually set by the follow-
ing rule [11], [13]. We use the maximum execution time
t̂Ei =max

{
tEih
∣∣ph∈ P

}
and the maximum transmission time

t̂Cij=max
{

dij

bh

∣∣∣ph∈ P
}

to estimate start and finish time:

t̃Si =

0, if Pre(ai) = ∅,

max
aj∈Pre(ai)

{
t̃Fj + t̂Cji

}
, otherwise.

(3)

t̃Fj = t̃Sj + t̂Ej . (4)

The deadline is set to:

deadline = µ×max
{
t̃Fi

∣∣∣ai ∈ A
}
, (5)

where µ ∈ {0.8, 1.1, 1.5, 1.8} is deadline factor.

3.4 Workflow Scheduling

Workflow scheduling is to schedule the tasks of a workflow
to the VMs on a cloud platform. In essence, workflow
scheduling establishes a mapping between the tasks and
the VMs. Fig. 2(b) shows a sample schedule generated for
the workflow in Fig. 2(a). The VM types are selected in the
simulation experiment in Section 5.1.1.

This work focuses on finding a schedule to execute
a workflow on an IaaS cloud such that total cost and
total idle rate are minimized while meeting the user de-
fined deadline constraint. A schedule is represented as
Π = (V A, TS , TF) and R = (T̄S , T̄E , T̄HS , T̄HE) and the
objective is f(Π, R) = (total cost, total idle rate).

• V A =
{
vAi
∣∣i ∈ A

}
is the mapping of the tasks to the VMs,

where vAi represents the VM where task ai is executed.
• TS =

{
tSi
∣∣i ∈ A

}
and TF =

{
tFi
∣∣i ∈ A

}
are the set of

actual start time and finish time of tasks, respectively.
• T̄S =

{
t̄Sh
∣∣h ∈ V

}
and T̄E =

{
t̄Eh
∣∣h ∈ V

}
are the set of

lease start time and lease end time of VMs, respectively.
• T̄HS =

{
t̄HS
hk

}
and T̄HE =

{
t̄HE
hk

}
are the set of start and

end time of the kth hibernation state of the hth instance,
respectively, where h ∈ V , k = 1, 2, · · · ,

∣∣t̄HS
h

∣∣.
The total cost consists of two parts: the cost of running

state (RC) and the cost of hibernation state (HC).

RCh =


vMh g(t̄Sh , t̄

E
h),

∣∣t̄HS
h

∣∣ = 0,

vMh

(
g(t̄Sh , t̄

HS
h1) +

∑|t̄HS
h |−1

k=1 g(t̄HE
hk , t̄HS

h(k+1))

+g(t̄HE
h|t̄HS

h |
, t̄Eh)

)
,
∣∣t̄HS
h

∣∣ ≥ 1.

(6)

HCh =

0,
∣∣t̄HS
h

∣∣ = 0,

MH
∑|t̄HS

h |
k=1 g(t̄HS

hk , t̄
HE
hk),

∣∣t̄HS
h

∣∣ ≥ 1.
(7)

Finally, the total cost of executing all tasks in a workflow is
defined as:

total cost =
∑|V |

h=1
(RCh +HCh). (8)

Although the number of resource is not limited, the
leased instance should also be well utilized. The other goal
of the scheduling is to reduce the idle time as much as
possible, which is measured by total idle rate in Eq.(9). The
smaller the value, the less idle the rented instance resources
are. In tEih, vAi =h. Moreover, this goal avoids this situation:
even if the resource utilization is small, the total resource
utilization may be high due to the large scale resources.

total idle rate =

|V |∑
h=1

(
1−

∑
i t

E
ih

t̄Eh − t̄Sh

)
. (9)

Based on the previous definitions, the workflow schedul-
ing problem can be formally defined as follows:

Minimize total cost, total idle rate (10)

subject to max
{
tFi

∣∣∣i ∈ A
}
≤ deadline, (11)

tFi ≤ tSj , (ai, aj) ∈ E. (12)

4 THE PROPOSED WORKFLOW SCHEDULING AL-
GORITHM

Cost saving can be achieved through three ways: selecting
suitable VMs for the tasks, reducing unnecessary idle time
and setting idle instances to hibernate. Therefore, a work-
flow scheduling algorithm named Enhanced Task Type First
Algorithm (ET2FA) is proposed, which is a hybrid heuristic
algorithm composed of three stages, as described in Table 3.

Table 3
Three Main Phases of ET2FA.

Section Phase Description

4.1 T2FA Establish the mapping of tasks to resources.
4.2 DOBS Theorem 1 is used to further optimize the results

of T2FA to reduce cost and unnecessary idle time.
4.3 IHSH Determine when and which state the instance

should be switched.

4.1 Task Type First Algorithm (T2FA)
In a workflow, there are some tasks with special charac-
teristics. For example, (1) a sequence of tasks with certain
structure can be regarded as one task to simplify workflow;
(2) the finish time of a task affects all the start time of its sub-
sequent tasks; (3) the finish time of two or more tasks jointly
determines the start time of their successors. Considering
these particularities, such tasks can be given priority in our
scheduling. Compact scheduling and data transmission are
the main factors that affect the total cost and total idle rate,
which can be adjusted during VM selection. Based on the
above analysis, this section proposes T2FA.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

4.1.1 Task Topological Level
Given a DAG-based workflow, its task ai’s topological level
Lev(ai) is defined as [11]:

Lev(ai) =

0, if Pre(ai) = ∅,

max
aj∈Pre(ai)

{Lev(aj)}+ 1, otherwise.
(13)

Thus, the set aLli ∈ AL of task in each level can be obtained,
as shown in Eq. (14).

aLl = {ai|l = Lev(ai), ai ∈ A} , (14)

where aLli represents the ith task in the lth level, l =
0, 1, · · · ,max {Lev}, i = 1, · · · ,

∣∣aLl ∣∣, and
∣∣aLl ∣∣ is the number

of tasks in lth level. Especially, tasks at a lower topological
level have higher priorities than tasks at a higher level [11].

When there is only one task in a certain level, whether
the task can be executed as early as possible plays a key role
in the whole workflow scheduling. It should be assigned
to VM with higher configuration or earlier completion time.
Therefore, it is classified as the 0th type of task (i.e., Eq. (15)),
and a scheduling strategy is designed separately for it when
scheduling tasks.

Type0 =
{
ai

∣∣∣ai ∈ aLl ,
∣∣∣aLl ∣∣∣ = 1

}
. (15)

4.1.2 DAG Structure Decomposition
By analyzing the composition characteristics of the upper
and lower nodes in the DAG, it can be summarized into the
four structures of Fig. 3. The details are as follows.

(a) Single output single input.

Type1

Type2

(b) Multiple output single input.

Type3

Type4

(c) Single output multiple input. (d) Multiple output multiple input.

Fig. 3. Four structures in DAG.

• In Fig. 3(a), the structure is single output single input
(SOSI), which is a typical serial structure and satisfies the
following constraints.

|Suc(ai)| =
∑

aj∈Suc(ai)

|Pre(aj)| = 1. (16)

The best strategy is to assign the tasks to same VM, so
they can be merged as a task block. The execution time
of the task block is the sum of its internal task execution
time, and the data transmission within the structure is 0.
After task merging, DAG can be simplified, and both the
solution complexity and space can be reduced.
For example, tasks a5 and a8 in Fig. 2(a) are merged into
task a5 8 in Fig. 2(b).
• In Fig. 3(b), the structure is multiple output single input

(MOSI), in which the parent node has multiple child
nodes, and the child nodes have a unique parent node.
The structure satisfies the following constraints.

|Suc(ai)| =
∑

aj∈Suc(ai)

|Pre(aj)| > 1. (17)

Child nodes are parallel structures, and their start time
depends on the unique parent node. To facilitate schedul-
ing, the parent node ai is defined as the first type of node
Type1, child node aj is defined as the second type of node
Type2.

Type1 = {ai|ai satisfies Eq. (17)} , (18)

Type2 = {aj |aj ∈ Suc(ai), ai ∈ Type1} . (19)

• In Fig. 3(c), the structure is single output multiple input
(SOMI), in which the parent nodes have unique child
nodes, and the child node has multiple parent nodes. The
structure satisfies the following constraints.

|Pre(aj)| =
∑

ai∈Pre(aj)

|Suc(ai)| > 1. (20)

Parent nodes are parallel structures, and their finish time
jointly determine the start time of the child node. To
facilitate scheduling, the parent node ai is defined as the
third type of node Type3, child node aj is defined as the
fourth type of node Type4.

Type3 = {ai|ai satisfies Eq. (20)} , (21)

Type4 = {aj |aj ∈ Suc(ai), ai ∈ Type3} . (22)

• In Fig. 3(d), the structure is a general case of multiple
output multiple input (MOMI) and is not analyzed sepa-
rately.

4.1.3 Task Scheduling and VM Selection
For VM selection, VM is first selected from the VMs with as-
signed tasks, which can make the scheduling more compact.
Let t̂∗ represent the maximum finish time of all scheduled
tasks. One of the characteristics of workflow tasks is paral-
lelism, and t̂∗ is often the dividing point of task execution
in two adjacent levels. Therefore, t̂∗ and the VMs with
running tasks at the two adjacent levels are used as compact
scheduling conditions.

Available start time refers to the earliest start time when
a task is assumed to be executed on a specified VM, which is
determined by the actual finish time of its predecessor task
and the current completion time of the VM. For example,
t̃Aih ∈ T̃A represents the available start time of task ai on
VM vh. It is obtained as given in Eq. (23).

t̃Aih=


t̄∗h, if Pre(ai) = ∅,

max

{
max

aj∈Pre(ai)

{
tFj + tkhji

}
, t̄∗h

}
, otherwise,

(23)
where k = vAj is the assigned VM of task aj . t̄∗h is the current
completion time of VM vh and not less than the duration of
cold startup if VM vh is new created.

The start time of a task ai on all available VMs can be
obtained by Eq. (23). We need to select a VM to execute
the task and determine the actual start time of the task (i.e.
tSi). For compact scheduling, we prefer to assign the task
with that at the same topology level together. In order to
reduce data transmission among VMs, we prefer to assign
the task with its predecessors together. Therefore, VMs that
can execute this task are regarded as candidate set and
divided into the following three layers:

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 1: T2FA

Input: Resource (P,U,B,M), workflow
(A,W,E,D), deadline

Output: Π = (V A, TS , TF)
1 Simplify DAG by Eq. (16);
2 Compute AL using Eqs. (13) and (14);
3 V ← ∅, V P ← ∅ ;
4 k ← argmax {U(h)|h ∈ P} ;

5 V C ← {k}, t̂∗ ← max{wi|ai∈aL
0 }

U(k) ;
6 for l← 0 to max{Lev} do
7 if (

∣∣aLl ∣∣ = 1) and (t̂E
aL
l1
> 0.1×max

{
t̃Fi
∣∣ai ∈ A

}
)

then
8 Deploy the task to VM k that can be finished

at the earliest;
9 if k ̸∈ V then V ← V ∪ {k};

10 V P ← {k} , V C ← ∅;
11 Continue;
12 end
13 Randomly generate a rank from 1 to 4, denoted

by Rank ;
14 foreach r ∈ Rank do
15 π ← aLl ∩ Typer ;
16 Typer ← Typer − π;
17 aLl ← aLl − π;
18 Sort the tasks in π in descending order of

weight value;
19 call TaskSchedule(π);
20 end
21 Sort the unscheduled tasks in aLl in descending

order of weight value;
22 call TaskSchedule(aLl);
23 V P ← V C , V C ← ∅;
24 end

• The first layer is the VM set V C with running tasks at
current topological level;
• The second layer is the VM set V P with running tasks at

immediately preceding topological level;
• The third layer is all available VMs, including leased VMs

set V and non-leased VMs set with all VM types.

The VM candidate sets are traversed layer by layer until T̃A

is determined. In each layer, if the smallest T̃A is less than
t̂∗, the corresponding T̃A is taken as the tSi .

Through the above process, the actual start time tSi of the
task ai and the VM vAi deployed by the task can be obtained
simultaneously. The actual finish time of task ai (i.e. tFi) is
equal to the sum of actual start time and execution time. See
Algorithm 2 for details.

4.1.4 Procedure for T2FA
T2FA is designed according to the characteristics of resource
model and workflow application model, the detail of which
are given in Algorithm 1.

Pre-processing (lines 1-5 in Algorithm 1). Through the
structural decomposition of DAG in Section 4.1.2, DAG can
be simplified by Eq. (16) (line 1 in Algorithm 1). Then divide
the task topological level and determine the tasks at each
level (line 2 in Algorithm 1). Set the candidate VMs set and
the expected maximum finish time t̂∗ (lines 3-5 in Algorithm

Algorithm 2: TaskSchedule(π)
Input: Tasks order π
Output: Scheduling result of these tasks

1 foreach i ∈ π do
2 if V C ̸= ∅ then k ← argmin

{
t̃Aih|h ∈ V C

}
;

3 if (V C = ∅) or (t̃Aik + tEik > t̂∗) then
4 if V P ̸= ∅ then k ← argmin

{
t̃Aih|h ∈ V P

}
;

5 if (V P = ∅) or (t̃Aik + tEik > t̂∗) then
6 k ← argmin

{
t̃Aih|h ∈ V ∪ P

}
;

7 if k ̸∈ V then V ← V ∪ {k};
8 end
9 end

10 vAi ← k, tSi ← t̃Aik, tFi ← tSi + tEik;
11 if tFi > t̂∗ then t̂∗ ← tFi ;
12 if k ̸∈ V C then V C ← V C ∪ {k};
13 end

1). For DAG-based workflow scheduling, the selection of the
first VM is crucial, which lays the foundation of scheduling.

Task scheduling (lines 6-24 in Algorithm 1). In the task
scheduling stage, it is divided into four levels according to
the topology level and task type.

• Level 1 is the topological level from low to high (line 6 in
Algorithm 1);
• Level 2 is the tasks of Type0 (lines 7-12 in Algorithm 1);
• Level 3 is the tasks the other four special types (lines 13-20

in Algorithm 1);
• Level 4 is the tasks of general type (lines 21-22 in Algo-

rithm 1).

The four special types Type1-Type4 are scheduled in ran-
dom order. For tasks of same type, they are arranged in
descending order of task weight, as scheduled in Algorithm
2. Algorithm 2 gives the details to get the actual start time of
tasks and allocating VMs. In particular (line 8 in Algorithm
1) and lines 2, 4 and 6 in Algorithm 2), when there are
multiple equal earliest T̃A, the task is deployed to the VM
instance with the shortest delay for the completion time.

Expected maximum finish time t̂∗ is used as a reference
value, and its initial value is set in line 5 of Algorithm 1.
When scheduling tasks, VM with running tasks is preferen-
tially selected. When the available finish time of task is less
than t̂∗, deploy the task to VM with the earliest available
finish time; otherwise, select the VM with earliest available
finish time from all VMs and update t̂∗. The purpose of
setting t̂∗ is to make scheduling more compact. When there
is no VM in leased VMs set V meeting the condition (less
than t̂∗), a new VM will be applied from the cloud platform
and added to leased VMs set V (line 7 in Algorithm 2).

4.2 Delay Operation Based on Block Structure (DOBS)

When designing scheduling algorithm, there is generally a
commonality: the task is executed as early as possible. If
subsequent tasks cannot immediately start executing in time
due to dependency constraints, a certain amount of idle time
will be generated. However, part of the idle time can be
avoided by delaying the start execution time of some tasks.

Definition 1 (Block Structure). It consists of tasks that are
continuously executed without idle intervals on the same VM.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Particularly, when there is only one task, it can also be called a
block structure.

For example, the block structures in Fig. 4(a) are as
follows: [a1, a2, a4, a7], [a5 8, a3], [a6], [a9].

Theorem 1 (Block Structure Property). In a given scheduling
solution, first block structure on VM vh is X = [1, 2, ..., |X|].
When ∀x ∈ X, t̂Fx > tFx , delaying the start time of the first block
structure on the VM can reduce idle time and cost.

Proof. Let |X|+ 1 denote the immediate succession task of
first block structure. The idle time behind the block structure
is the difference between the actual start time of task |X|+ 1
and the actual finish time of task |X|, that is, tS|X|+1 − tF|X|.

Let t̂Fx denote the estimated latest finish time of task x
in the current solution, which is the minimum difference
between the start time and the transmission time of all direct
successor tasks Suc(x), except the successor tasks in the
block structure. When Suc(x) = ∅, let t̂Fx = tFx . Thus,

t̂Fx =

min

{
tSy − C

vA
x ,vA

y
x,y

}
, y ∈

(
Suc(x)− Suc(x) ∩X

)
,

tFx , if Suc(x) = ∅.
(24)

When ∀x ∈ X, t̂Fx − tFx > 0, the block structure can be
moved backward by ∆t without affecting the execution of
other tasks.

∆t = min
{
tS|X|+1 − tF|X|,min

{
t̂Fx − tFx |x ∈ X

}}
. (25)

Therefore, when the start execution time of block structure
is delayed by ∆t, the cost saved is at least MH × ⌊∆t⌋. At
the same time, due to the reduction of idle time, the resource
utilization of VM will inevitably increase.

0 500 1000 1500 2000 Time/s

v0(p3)

v1(p4)

V
M

a5_8 a3 a6 a9

a1 a2 a4 a7 Booting
Hibernate

(a) Before delay operation.

0 500 1000 1500 2000 Time/s

v0(p3)

v1(p4)

V
M

a5_8 a3 a6 a9

a1 a2 a4 a7 Booting
Hibernate

(b) After delay operation.

Fig. 4. Comparison before and after delay operation based on block
structure.

As shown in Fig. 4, when tasks a5 8 and a3 sat-
isfy Theorem 1, their start time can be delayed by
∆t = min

{
tSa6
− tFa3

,min
{
t̂Fa5 8

− tFa5 8
, t̂Fa3
− tFa3

}}
=

min {146.1,min {897.1, 134.3}} = 134.3. The process of
delaying tasks can also take advantage of the pay-as-you-
go feature of cloud to save cost. Therefore, Theorem 1 is
applied to adjust the scheduling solution of T2FA. Traverse
the first block structure of each VM until there is no block
structure that satisfies the constraint of Theorem 1. If the
block structure satisfies the constraint of Theorem 1, the
actual start and finish time of related tasks will be updated.
See the Algorithm 3 for details.

4.3 Instance Hibernate Scheduling Heuristic (IHSH)

Recently, cloud service providers have provided some in-
stances that support hibernation function. If one instance

Algorithm 3: DOBS

Input: Π = (V A, TS , TF)
Output: New Π = (V A, TS , TF)

1 repeat
2 foreach h ∈ V do
3 Find X as first block structure in instance vh;
4 Compute t̂Fx using Eq. (24), ∀x ∈ X ;
5 if ∀x ∈ X, t̂Fx > tFx then
6 Compute ∆t using Eq. (25);
7 foreach x ∈ X do
8 tSx ← tSx +∆t;
9 tFx ← tFx +∆t;

10 end
11 end
12 end
13 until no block is found;

is kept being idle for a period, it is wise to hibernate it to
save cost. Nevertheless, frequent hibernation may lead to
system failure or software operation error. Hence, a heuristic
is proposed to schedule when to hibernate an instance.
Once each state is determined, the total cost and total idle
rate can be obtained. Traverse each idle interval between in
instance, and set the idle interval to hibernation mode when
the requirement of hibernation is met. The requirements of
hibernation may be the shortest duration of hibernation and
the minimum gap between two adjacent hibernation in one
instance. According to the scheduling results of T2FA and
DOBS, the tasks executed on each instance and their start
and finish time are known. Let Sij represent the jth task
executed on instance vi. See the Algorithm 4 for details.

Algorithm 4: IHSH

Input: Π = (V A, TS , TF)
Output: R = (T̄S , T̄E , T̄HS , T̄HE),

f(Π, R) = (total cost, total idle rate)
1 foreach h ∈ V do
2 tempT ← 0, j ← 1;
3 for k ← 1 to |Sh| − 1 do
4 p← Shk, s← Sh(k+1);
5 if tSs − tFp > DurH & tFp − tempT > GapH

then
6 t̄HS

hj ← tFp , t̄HE
hj ← tSs −DurW ;

7 tempT ← tSs , j ← j + 1;
8 end
9 end

10 p← Sh1, s← Sh|Sh|;
11 t̄Sh ← tSp −DurP , t̄Eh ← tFs ;
12 end
13 Compute f(Π, R) = (total cost, total idle rate).

4.4 Time Complexity of ET2FA
The time complexity of ET2FA depends on its three phases.
Let n be the number of tasks and ebe the number of edges in
workflow. Since the maximum number of edges is (n−1)(n−2)

2
in DAG, assume e≃O(n2). Let |V | be the maximum number
of VMs required. In fact, the maximum number of VMs
required will not exceed n, and Wu et al. [11] have proved

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) CyberShake. (b) Epigenomics. (c) Inspiral. (d) Montage. (e) Sipht.

(f) Gaussian Elimination of problem size 6 (n = 20). (g) Molecular Dynamics Code.

Fig. 5. Seven real-world workflow applications.

that |V | ≤ n−max{Lev}, so assume |V | ≃ O(n). The time
complexity of the ET2FA is analyzed as follows:

• T2FA: O(n2). In lines 1-2 in Algorithm 1, simplify DAG
and compute AL must traverse all tasks, which can be
done within O(n) and O(n+e) respectively. In lines 6-24 in
Algorithm 1, it is essentially to traverse each task and al-
locate resources for the task through T̃A. In the process of
traversing each task, tasks are divided into different types.
In the worst case, there is only one type (only lines 21-22
are executed). The time complexity of sorting is O(n2) in
line 21. In line 2 in Algorithm 2, the time complexity of T̃A

is O(|V |). The time complexity of Algorithm 2 is O(n |V |).
Therefore, the time complexity of lines 6-24 in Algorithm
1 is O(n log n)+O(n |V |). In summary, the time complexity
of T2FA is O(n)+O(n+e)+O(n2)+O(n |V |)=O(n2).
• DOBS: O(n2). In the worst case, there is only one block

structure on each VM, that is, each task needs to be
traversed. Eqs. (24)-(25), the time complexity of LFT and
∆t are O(n+e), and O(n+|V |), respectively. Therefore, the
time complexity of DOBS is O(n+e)O(n+ |V |) = O(n2).
• IHSH: O(n). IHSH needs to traverse each task with a time

complexity of O(n).

According to the above analysis, the time complexity of
ET2FA is O(n2) +O(n2) +O(n) = O(n2).

5 PERFORMANCE EVALUATION

5.1 Simulation Environment

5.1.1 Resource Environment

In simulation experiment, we use 5 representative VM types
from low configuration to high configuration. The VM
configurations and their processing capacity are based on
current Amazon EC2 platform , as presented in Table 4.
According to the researches in [3], [4], [36], the processing
capacity in GFLOPS is estimated based on the number of
EC2 compute units (ECU). One ECU currently provides
CPU capacity equivalent to a 1.0–1.2 GHz 2007 Opteron or
2007 Xeon processor. EC2 usage are billed on one second
increments, with a minimum of 60 seconds. As for the
booting time of VM, according to the researches of [37], [38],
the cold startup time has been reduced from 97s to 55.9s for
Amazon EC2 Cloud. The warm startup time is set to 34.0s
based on the results obtained by [38]. Other parameters and
their values are listed in Table 5.

Table 4
Configurations and Prices of Virtual Machines2.

VM Type ECU
Processing
Capacity

(GFLOPS)

Cost
($/h)

Bandwidth
(Gbps) a

1 c3.large 7 30.8 0.128 1
2 c3.xlarge 14 61.6 0.255 1.5
3 c3.2xlarge 28 123.2 0.511 2
4 c3.4xlarge 55 242 1.021 3
5 c3.8xlarge 108 475.2 2.043 3

a. Manually set according to the VM configuration.

Table 5
List of Other Parameters and Their Values.

Parameter Symbol Value

The duration of cold startup DurC 55.9s
The duration of warm startup DurW 34.0s
The duration of stopping DurP 5.6s
The shortest duration of hibernation DurH 60.0s
The minimum gap between two adjacent hi-
bernation in one instance

GapH 120s

ElasticIP cost MH 0.005$/h

5.1.2 Workflow Applications

Seven real-world workflow applications with different
scales (numbers of tasks) from different scientific areas are
adopted in the simulation, as shown in Fig. 5.

The following five real-world workflow applications
have benchmark data: CyberShake, Epigenomics, Inspiral,
Montage and Sipht [4], [12], [13], [16], [39]. Figs. 5(a)-5(e)
show the sample DAG structures of these workflows [1],
[34]. More details about these workflows can be found in
[39]. All these workflows are generated in form of Directed
Acyclic Graph in XML (DAX) format by Pegasus Workflow-
Generator [13], [39], and are publicly available on Pegasus
website3. These DAX files contain information such as list of
tasks, dependencies between tasks, their computation time
and size of the input/output files generated by the tasks.
Similar to [40], these benchmarks are adaptively adjusted.
That is, it is assumed that these benchmarks are simulated
and generated on a processor with the same configuration
as VM p3. The number of tasks varies from 24-1000.

2. https://aws.amazon.com/ec2/pricing/on-demand/,
https://instances.vantage.sh/

3. https://confluence.pegasus.isi.edu/display/pegasus/
Deprecated+Workflow+Generator

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/ec2/pricing/on-demand/
https://instances.vantage.sh/
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

The following two real-world workflow applications
only have DAG structure: Gaussian elimination and Molec-
ular dynamics code [7]. In the experiment, the weight of
tasks W is randomly generated from a uniform distribu-
tion [1800, 180000] and the amount of data transmitted
between tasks D is randomly generated from [18, 1800].
The Gaussian elimination is an algorithm used to solve a
system of linear equations. The total number of tasks n in a
Gaussian elimination graph is determined by the matrix size
m, which is equal to n = (m+2)(m−1)

2 (see Fig. 5(f)). In the
experiment, set m = {10, 20, 35, 45} and the corresponding
n = {54, 209, 629, 1034}. The molecular dynamics code is
given in [7], as shown in Fig. 5(g). This application has a
fixed DAG structure and the number of tasks n = 41.

To distinguish different problems, a symbol ’Workflow
type Number of tasks’ is adopt , such as ’Cyber 30’ rep-
resents CyberShake of 30 tasks. In particular, ’Molec 0’
represents the 0th test problem of Molecular dynamics code.

These seven workflow applications have different struc-
tures and characteristics and are widely used to evaluate
the performance of the workflow scheduling approaches.
Their specific characteristics are listed in Table 6. They can
be decomposed into at least two structures in Fig. 3, and all
of them have SOMI structure (Fig. 3(c)).

Table 6
The Structures in Fig. 3 Contained in Different Workflows.

Workflow SOSI MOSI SOMI MOMI

CyberShake ✓ ✓ ✓
Epigenomics ✓ ✓ ✓
Inspiral ✓ ✓ ✓
Montage ✓ ✓
Sipht ✓ ✓
Gaussian elimination ✓ ✓ ✓ ✓
Molecular dynamics code ✓ ✓ ✓

5.2 Baseline Algorithms
To illustrate the effectiveness of the proposed algorithm,
five baseline algorithms are implemented for comparison,
including two heuristic algorithms IC-PCP [12] and JIT-
C [13], two meta-heuristic algorithms PSO [4] and KAD-
WWO [22], and a reinforcement learning algorithm QL-
HEFT [16]. These five algorithms are classical in solving the
cost-minimization and the deadline-constrained workflow
scheduling problem. As mentioned in Section 2, IC-PCP
divides partial critical paths based on deadline, and applies
recursive method to schedule tasks to optimize cost. JIT-C
schedules tasks sequentially based on task topological level,
combines the cheapest task-VM mapping for VM selection,
and optimizes cost. PSO adopts the sequence based task
to resource mapping method (encoding), schedules tasks to
specified VM (decoding) without violating the dependency
between tasks, and then integrates the coding and decoding
into PSO’s iterative mechanism to optimize cost. KADWWO
adopts the coding and decoding schemes similar to PSO,
and designs the discrete propagation operator, adaptive
refraction operator and breaking operator of WWO. The
optimization objective is to minimize cost under deadline
constraint. QL-HEFT regards tasks as states and actions
respectively, takes the rank value in HEFT as immediate
reward, obtains the scheduling order of tasks through Q
table, and then selects VM by the earliest finish task rule. It

is evaluated on several metrics such as makespan, efficiency
and average response time.

The time complexity of IC-PCP and JIT-C is equal to that
of ET2FA, which is O(n2). The time complexity of PSO and
KADWWO is O(pgn2), where p is the population size and
g is evolutionary generations. The time complexity of QL-
HEFT is O(gn2), where g is the number of iterations. In QL-
HEFT, g is different from that of PSO, which is not a definite
value and is limited by convergence conditions and running
time. It can be seen that the time complexity of ET2FA is the
same as that of other heuristic algorithms, which are smaller
than PSO, KADWWO and QL-HEFT. This is also proved by
the comparison of running time of algorithms.

The parameters of PSO are set according to the optimal
parameters given in [4], which are c1 = c2 = 2.0, ω = 0.5,
and the number of particles and iteration times are set
to 100. The parameters of KADWWO are set according to
the optimal parameters given in [22], which are NP = 5,
c = 0.4, M = 0.5, q = 0.3, and the maximum number of
fitness evaluation is set to n×100. For different problems,
the running time of each algorithm does not exceed 1.2× n
seconds. Another termination condition of QL-HEFT is that
the target value does not change for ten consecutive times,
and it is considered that the algorithm converges.

Since this paper is the first time to study instance hiber-
nation to save cost, for the sake of fairness, the third stage
IHSH is applied to all baseline algorithms. Each algorithm is
repeated ten times, and the mean value is taken as the final
solution obtained by the algorithm. All algorithms are coded
in Python and are executed on Intel Core i5-9500 3.0GHz
processor with 32GB RAM.

5.3 Performance Results
To evaluate the impacts of different workflow types and
resource quantity, for each workflow under different dead-
line factors, comparisons of the algorithms are based
on the following three metrics: total cost, total idle rate
and running time of the algorithms. Since workflows
with different types and different scales of task num-
bers have different scales of costs, total cost and to-
tal idle rate should be normalized before they can be aggre-
gated for comparison. The original data of the experimen-
tal results are available at https://github.com/szx1010/
ET2FA-Performance-Results. Therefore, the Relative Per-
centage Deviation (RPD) is used as the response variable for
evaluating the results [24], [41] and it is defined as follows:

RPDA =
fA − fmin

fmax − fmin
, (26)

where fA is the solution obtained by algorithm A, and fmin

and fmax are the minimum and maximum value achieved
among all the comparison algorithms, respectively. That is,
the algorithm with RPD = 0 has the best effect on the
minimization problem. Running time is the CPU execution
time for the algorithm to obtain the scheduling solution
for a given problem. Although the workflow scheduling
problem is static scheduling problem, in order to provide a
practical solution, running time is the key evaluation metric
to measure the algorithm [1], [7], [35].

One way Analysis of Variance (ANOVA) technique is
conducted for analysing the performance of the proposed

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

https://github.com/szx1010/ET2FA-Performance-Results
https://github.com/szx1010/ET2FA-Performance-Results

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8

0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8

C y b e r _ 3 0 C y b e r _ 5 0 C y b e r _ 1 0 0 C y b e r _ 1 0 0 0 E p i g e _ 2 4 E p i g e _ 4 6 E p i g e _ 1 0 0 E p i g e _ 9 9 7

G a u s s _ 5 4 G a u s s _ 2 0 9 G a u s s _ 6 2 9 G a u s s _ 1 0 3 4 I n s p i _ 3 0 I n s p i _ 5 0 I n s p i _ 1 0 0 I n s p i _ 1 0 0 0

M o l e c _ 0 M o l e c _ 1 M o l e c _ 2 M o l e c _ 3 M o n t a _ 2 5 M o n t a _ 5 0 M o n t a _ 1 0 0 M o n t a _ 1 0 0 0

S i p h t _ 3 0 S i p h t _ 6 0 S i p h t _ 1 0 0 S i p h t _ 1 0 0 0

0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

I C - P C P
P S O
J I T - C
Q L - H E F T
K A D W W O
E T 2 F A

RP
Do

fT
ota

lC
ost

D e a d l i n e F a c t o r s
Fig. 6. The RPD of Total Cost of each workflow with IC-PCP, PSO, JIT-C, QL-HEFT, KADWWO, and ET2FA.

I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A

I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A

C y b e r S h a k e E p i g e n o m i c s G a u s s i a n E l i m i n a t i o n I n s p i r a l

M o l e c u l a r D y n a m i c s C o d e M o n t a g e S i p h t

0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

A l g o r i t h m s

RP
D o

f T
ota

l C
ost

 M e a n ± 9 5 % C I
 I C - P C P
 P S O
 J I T - C
 Q L - H E F T
 K A D W W O
 E T 2 F A

p < 0 . 0 5 p < 0 . 0 5p < 0 . 0 5

p < 0 . 0 5 p < 0 . 0 5 p < 0 . 0 5

p < 0 . 0 5

Fig. 7. Means plot of RPD of Total Cost with 95.0 percent Tukey HSD confidence intervals.

algorithm whether there are statistically significant differ-
ences in the results. The significance level is set to 0.05.
As we know, the ANOVA is frequently employed in the
literature due to an effective statistical analysis [41], [42].
When the solution obtained by the algorithm cannot satisfy
the deadline constraint (i.e. infeasible solution), the values
of the three metrics are null.

5.3.1 Comparison of Total Cost

Fig. 6 shows the RPD of Total Cost of each workflow with
different algorithms. For CyberShake workflow, ET2FA and
IC-PCP are obviously superior to other algorithms, but
when deadline factor is 1.1, IC-PCP can’t get a feasible
solution. For Epigenomics, Gaussian elimination and Molec-
ular dynamics code workflows, except for ’Epige 46’, ET2FA
has almost the same performance as QL-HEFT, which is
superior to other algorithms. Among them, IC-PCP can’t
get feasible solutions for Gaussian elimination workflows
except ’Gauss 209’. For Inspiral workflow, QL-HEFT is the
best, followed by ET2FA. For Montage workflow, when the
deadline factor is 0.8, only QL-HEFT can get a feasible
solution on ’Monta 25’ and ’Monta 50’. For other problems
of Inspiral workflow, ET2FA can achieve better perfor-
mance. For Sipht workflow, the performance of IC-PCP, QL-
HEFT and ET2FA is not significantly different, especially
for IC-PCP and ET2FA, whose performances are almost
the same. In addition, these three algorithms outperform
PSO, KADWWO and JIT-C. For all of Epige 24, Epige 46
and Inspiral workflows, ET2FA is slightly worse than QL-
HEFT due to the same reason. Fig. 8 is an example showing
the comparison results under workflow Inspi 30. As shown

0 50 100 150 200 Time/s

v0(p4)
v1(p4)
v2(p4)
v3(p4)
v4(p4)
v5(p4)
v6(p4)

V
M

a3 a10 a16 a23 a30
a4 a11 a18 a25

a2 a9 a21 a28

a1 a8 a24

a5 a12 a22 a29

a6 a13 a19 a26

a7 a14 a20 a27

a17a15

Booting
Hibernate

(a) Gantt chart of scheduling with Inspi 30 over QL-HEFT,
(total cost = 0.32, total idle rate = 2.85).

0 200 400 600 800 1000 1200 Time/s

v0(p1)

v1(p4)

V
M

a3_10 a15 a16_23

a1_8
a5_12 a2_9

a30

a6_13 a21_28 a22_29a19_26
a4_11 a7_14 a20_27a17_24 a18_25

Booting
Hibernate

(b) Gantt chart of scheduling with Inspi 30 over ET2FA, (total cost =
0.52, total idle rate = 0.12).

Fig. 8. Comparison Inspiral workflow scheduling of 30 tasks over QL-
HEFT and ET2FA, (deadline = 2136).

in Fig. 8(a), QL-HEFT evenly distributes tasks to multiple
VMs with high performance. As shown in Fig. 8(b), ET2FA
assigns task a3 10 to the VM type with low performance,
resulting in a longer completion time and higher cost. But
this still meets the deadline. The fundamental reason is that
when there is a tie (i.e. multiple equal available start time
T̃A) in line 8 of Algorithm 1 and lines 2, 4 and 6 of Algorithm
2, the VM type with low performance is selected.

Fig. 7 is plot of RPD of Total Cost with 95.0 percent
Tukey HSD confidence intervals of all algorithms for all
workflows. All p-values are less than 0.05, indicating that
all algorithms have a significant different on the response
variable at the 95.0% confidence level.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8

0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8 0 . 8 1 . 1 1 . 5 1 . 8

C y b e r _ 3 0 C y b e r _ 5 0 C y b e r _ 1 0 0 C y b e r _ 1 0 0 0 E p i g e _ 2 4 E p i g e _ 4 6 E p i g e _ 1 0 0 E p i g e _ 9 9 7

G a u s s _ 5 4 G a u s s _ 2 0 9 G a u s s _ 6 2 9 G a u s s _ 1 0 3 4 I n s p i _ 3 0 I n s p i _ 5 0 I n s p i _ 1 0 0 I n s p i _ 1 0 0 0

M o l e c _ 0 M o l e c _ 1 M o l e c _ 2 M o l e c _ 3 M o n t a _ 2 5 M o n t a _ 5 0 M o n t a _ 1 0 0 M o n t a _ 1 0 0 0

S i p h t _ 3 0 S i p h t _ 6 0 S i p h t _ 1 0 0 S i p h t _ 1 0 0 0

0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

I C - P C P
P S O
J I T - C
Q L - H E F T
K A D W W O
E T 2 F A

RP
Do

fT
ota

lId
leR

ate

D e a d l i n e F a c t o r s
Fig. 9. The RPD of Total Idle Rate of each workflow with IC-PCP, PSO, JIT-C, QL-HEFT, KADWWO, and ET2FA.

I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A

I C - P C P P S O J I T - C Q L - H E F T
K A D W W O

E T 2 F A

C y b e r S h a k e E p i g e n o m i c s G a u s s i a n E l i m i n a t i o n I n s p i r a l

M o l e c u l a r D y n a m i c s C o d e M o n t a g e S i p h t

0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

A l g o r i t h m s

RP
D o

f T
ota

l Id
le R

ate

 M e a n ± 9 5 % C I
 I C - P C P
 P S O
 J I T - C
 Q L - H E F T
 K A D W W O
 E T 2 F A

p < 0 . 0 5 p < 0 . 0 5p < 0 . 0 5

p < 0 . 0 5 p < 0 . 0 5 p < 0 . 0 5

p < 0 . 0 5

Fig. 10. Means plot of RPD of Total Idle Rate with 95.0 percent Tukey HSD confidence intervals.

The better performance of IC-PCP is mainly owing to
its critical path method: when allocating resources for one
critical path, choose from low allocation until there is a
VM that can deploy the whole path. This method basically
does not cause additional data transmission cost. The main
reasons why PSO, KADWWO and JIT-C algorithm can’t
always achieve better performance are as follows: (1) PSO
and KADWWO are swarm intelligence optimization algo-
rithms, which are random in initialization and need constant
iterative optimization to achieve better performance; When
selecting resources for tasks, these two algorithms randomly
select resources without guidance, and do not consider the
impact of data transmission. (2) JIT-C has the cheapest
selection rule when allocating resources for tasks. However,
it may be the cheapest to select resources at a certain time,
but not necessarily the cheapest for the whole workflow.
5.3.2 Comparison of Total Idle Rate
Fig. 9 shows the RPD of Total Idle Rate of each workflow
with different algorithms. Fig. 10 shows means plot of RPD
of Total Idle Rate with 95.0 percent Tukey HSD confidence
intervals of all algorithms for all workflows. All p-values
are less than 0.05 which indicates that all algorithms have
a significant different on the response variable at the 95.0%
confidence level. Total idle rate mainly evaluates the full
utilization of the selected VM by the algorithm. As can be
seen from Fig. 10, for Epigenomics, Gaussian elimination
and Molecular dynamics code workflows, the performance
of PSO is worse than other algorithms, and the performance
of other algorithms is almost the same with no significant
difference. For CyberShake, Inspiral and Sipht workflows,
IC-PCP and ET2FA are superior to other algorithms, and

their performance is almost the same, with no significant
difference. For Montage workflow, ET2FA is superior to
other algorithms and has significant differences.

The performance of PSO is always the worst, which
shows that the algorithm can’t make full use of the selected
VM. That is, when allocating resources for tasks, it is neces-
sary to dynamically allocate resources in the scheduling pro-
cess, rather than selecting fixed resource types for tasks in
advance. It can be seen from Fig. 9 that QL-HEFT is always
close to PSO, and its performance is also poor. The reason
is that when allocating resources, QL-HEFT always selects
resources according to the rule of the earliest completion
time. This rule may turn this problem into a homogeneous
resource type with only one highest configured VM type.
Although QL-HEFT can’t achieve good performance for
total idle rate, it can perform well for total cost, especially
for Epigenomics and Inspiral workflows.

5.3.3 Running Time of the Algorithms

Table 7 shows the average running time of the algorithm
under different workflow types. Avg is the average running
time of the algorithm based on all workflow types. The time
of ET2FA is always the least, and its average time is only
0.346 seconds. With the increase of the scale of the problem,
the running time does not change significantly. Since PSO
and KADWWO are swarm intelligence algorithms, through
iterative optimization, they are obvious that the running
time of the algorithm is longer than that of the heuristic
algorithm. QL-HEFT is also an iterative optimization algo-
rithm by constantly updating Q-table. Although IC-PCP and
JIT-C are heuristic algorithms, there are still some iterations

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

in the algorithm process. As the problem scale increases, the
running time becomes significantly longer.

Table 7
Average Running Time of Scheduling Algorithms (in Second).

IC-PCP PSO JIT-C QL-HEFT KADWWO ET2FA

Cyber 30 0.054 36.498 0.380 0.655 26.653 0.034
Cyber 50 0.085 61.485 0.998 0.662 61.877 0.059
Cyber 100 0.314 123.247 4.121 2.100 127.071 0.128
Cyber 1000 16.305 1219.139 389.530 199.216 1458.821 1.510
Epige 24 0.033 29.238 0.041 0.257 11.698 0.014
Epige 46 0.063 57.286 0.122 2.528 42.893 0.026
Epige 100 0.373 121.802 0.344 2.123 124.906 0.054
Epige 997 8.886 1218.974 25.965 436.005 null 0.562
Gauss 54 null 65.850 0.863 53.767 53.929 0.058
Gauss 209 0.821 254.838 13.483 251.488 255.339 0.262
Gauss 629 null 768.435 150.028 760.295 789.016 0.758
Gauss 1034 null 1268.986 365.238 1250.637 1435.058 1.314
Inspi 30 0.039 36.503 0.119 0.231 19.182 0.021
Inspi 50 0.067 60.837 0.272 0.600 51.858 0.033
Inspi 100 0.168 121.688 0.999 3.992 124.277 0.068
Inspir 1000 null 1220.206 84.327 167.148 1432.261 0.829
Molec 0 0.058 50.075 0.660 23.715 31.550 0.046
Molec 1 0.056 50.068 0.660 7.757 31.830 0.046
Molec 2 null 49.891 0.660 16.180 31.992 0.047
Molec 3 null 49.939 0.659 11.955 31.723 0.046
Monta 25 0.030 30.290 0.222 0.217 21.012 0.030
Monta 50 0.086 61.307 0.987 0.885 62.503 0.069
Monta 100 0.281 123.058 4.038 2.095 127.815 0.139
Monta 1000 73.626 1246.531 469.442 187.338 1942.837 2.312
Sipht 30 0.045 35.128 0.296 0.583 35.879 0.028
Sipht 60 0.090 71.047 1.067 0.857 73.640 0.055
Sipht 100 0.167 118.190 2.845 1.918 129.099 0.090
Sipht 1000 13.476 1184.152 277.391 161.450 1811.342 1.064
Avg 5.233 347.667 64.134 126.666 383.187 0.346

When these results are combined, the ET2FA is an effec-
tive and efficient algorithm for workflow scheduling. The
superiority of ET2FA are as follows: 1) ET2FA considers
three special structures in DAG and prioritizes the tasks
of these structures; 2) We devises a guiding VM selection
method based on compact scheduling conditions; 3) We
further optimizes the scheduling results by utilizing the
property of block structure.

6 CONCLUSION

In this paper, a more realistic workflow scheduling problem
in cloud with hibernation mode and per-second billing with
a minimum of 60 seconds is considered. By analyzing the
characteristics of the problem and the properties of the block
structure, a hybrid heuristic algorithm with three stages
is proposed, which is called Enhanced Task Type Priority
Algorithm (ET2FA). The simulation results and comparisons
demonstrate that ET2FA outperforms the baseline algo-
rithms including two heuristic algorithms IC-PCP and JIT-C,
two meta-heuristic algorithms PSO and KADWWO, and a
reinforcement learning algorithm QL-HEFT.

ET2FA outperforms baselines, but it still has the follow-
ing limitations: 1) We ignore the heterogeneous tasks such as
computing-intensive, memory-intensive, network-intensive
and GPU-demanding tasks; 2) When the scale of workflow
becomes very large, ET2FA may not guarantee a satisfactory
solution due to its small search space.

In the future, we intend to further enhance the quality of
the presented method on large/very large-scale workflow
scheduling with energy optimization (e.g., up to 5000 tasks).
In the case of a large-scale tasks, heuristic algorithm is

limited to a small search space, and its solution can still
be further optimized, so we intend to integrate heuristic
algorithm into meta-heuristic algorithm to obtain the non-
dominated solution set.

ACKNOWLEDGMENTS

This work is financially supported by Shenzhen
Science and Technology Program under Grant
No.JCYJ20210324132406016, National Natural Science
Foundation of China under Grant No.61732022 and
Guangdong Provincial Key Laboratory of Novel Security
Intelligence Technologies under Grant No.2022B1212010005.

REFERENCES

[1] A. Song, W.-N. Chen, X. Luo, Z.-H. Zhan, and J. Zhang, “Schedul-
ing workflows with composite tasks: A nested particle swarm
optimization approach,” IEEE Trans. Serv. Comput., vol. 15, no. 2,
pp. 1074–1088, 2020.

[2] H. Yuan, J. Bi, and M. C. Zhou, “Energy-efficient and QoS-
optimized adaptive task scheduling and management in clouds,”
IEEE Trans. Autom. Sci. Eng., vol. 19, no. 2, pp. 1233–1244, 2022.

[3] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy
aware scheduling algorithm for scientific workflows with deadline
constraint in clouds,” IEEE Trans. Serv. Comput., vol. 11, no. 4, pp.
713–726, 2018.

[4] M. A. Rodriguez and R. Buyya, “Deadline based resource pro-
visioning and scheduling algorithm for scientific workflows on
clouds,” IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, 2014.

[5] Q. Z. Xiao, J. Zhong, L. Feng, L. Luo, and J. Lv, “A cooperative
coevolution hyper-heuristic framework for workflow scheduling
problem,” IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 150–163,
2022.

[6] Z. G. Chen, Z. H. Zhan, Y. Lin, Y. J. Gong, T. L. Gu, F. Zhao,
H. Q. Yuan, X. Chen, Q. Li, and J. Zhang, “Multiobjective cloud
workflow scheduling: a multiple populations ant colony system
approach,” IEEE Trans. Cybern., vol. 49, no. 8, pp. 2912–2926, 2019.

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002.

[8] J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan, and
Y. Ma, “Reliability and temperature constrained task scheduling
for makespan minimization on heterogeneous multi-core plat-
forms,” J. Syst. Softw., vol. 133, pp. 1–16, 2017.

[9] C. G. Wu, W. Li, L. Wang, and A. Y. Zomaya, “Hybrid evolutionary
scheduling for energy-efficient fog-enhanced internet of things,”
IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 641–653, 2021.

[10] Z. H. Zhan, X. F. Liu, Y. J. Gong, J. Zhang, H. S. H. Chung, and
Y. Li, “Cloud computing resource scheduling and a survey of its
evolutionary approaches,” ACM Comput. Surv., vol. 47, no. 4, 2015.

[11] H. Wu, X. Hua, Z. Li, and S. Ren, “Resource and instance hour
minimization for deadline constrained DAG applications using
computer clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3,
pp. 885–899, 2016.

[12] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure as
a service clouds,” Futur. Gener. Comp. Syst., vol. 29, no. 1, pp. 158–
169, 2013.

[13] J. Sahni and P. Vidyarthi, “A cost-effective deadline-constrained
dynamic scheduling algorithm for scientific workflows in a cloud
environment,” IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 2–18,
2018.

[14] X. Li, L. Qian, and R. Ruiz, “Cloud workflow scheduling with
deadlines and time slot availability,” IEEE Trans. Serv. Comput.,
vol. 11, no. 2, pp. 329–340, 2018.

[15] Y. H. Jia, W. N. Chen, H. Yuan, T. Gu, H. Zhang, Y. Gao, and
J. Zhang, “An intelligent cloud workflow scheduling system with
time estimation and adaptive ant colony optimization,” IEEE
Trans. Syst. Man Cybern. -Syst., vol. 51, no. 1, pp. 634–649, 2021.

[16] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu, “QL-HEFT: a novel
machine learning scheduling scheme base on cloud computing
environment,” Neural Comput. Appl., vol. 32, no. 10, pp. 5553–5570,
2020.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[17] P. K. Muhuri and S. K. Biswas, “Bayesian optimization algorithm
for multi-objective scheduling of time and precedence constrained
tasks in heterogeneous multiprocessor systems,” Appl. Soft. Com-
put., vol. 92, 2020.

[18] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on schedul-
ing strategies for workflows in cloud environment and emerging
trends,” ACM Comput. Surv., vol. 52, no. 4, 2019.

[19] Z. Sun, C. Gu, H. Huang, and H. Zhang, “T2FA: A heuristic algo-
rithm for deadline-constrained workflow scheduling in cloud with
multicore resource,” in Proc. IEEE 14th Int. Conf. Cloud Comput.
(CLOUD), 2021, pp. 345–354.

[20] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,” Futur.
Gener. Comp. Syst., vol. 27, no. 8, pp. 1011–1026, 2011.

[21] S. G. Domanal, R. M. R. Guddeti, and R. Buyya, “A hybrid Bio-
inspired algorithm for scheduling and resource Management in
cloud environment,” IEEE Trans. Serv. Comput., vol. 13, no. 1, pp.
3–15, 2020.

[22] S. Qin, D. Pi, Z. Shao, and Y. Xu, “A knowledge-based adaptive
discrete water wave optimization for solving cloud workflow
scheduling,” IEEE Trans. Cloud Comput., pp. 1–18, 2021.

[23] A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA: a deadline-
constrained workflow scheduling algorithm for multicore re-
sources on the cloud,” J. Supercomputing, vol. 73, no. 2, pp. 756–781,
2017.

[24] Z. Zhu and X. Tang, “Deadline-constrained workflow scheduling
in IaaS clouds with multi-resource packing,” Futur. Gener. Comp.
Syst., vol. 101, pp. 880–893, 2019.

[25] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing
cost and makespan for workflow scheduling in cloud using fuzzy
dominance sort based HEFT,” Futur. Gener. Comp. Syst., vol. 93,
pp. 278–289, 2019.

[26] R. K. Naha and M. Othman, “Cost-aware service brokering and
performance sentient load balancing algorithms in the cloud,” J.
Netw. Comput. Appl., vol. 75, pp. 47–57, 2016.

[27] R. Sudarsan and C. J. Ribbens, “Combining performance and
priority for scheduling resizable parallel applications,” J. Parallel
Distrib. Comput., vol. 87, pp. 55–66, 2016.

[28] Z. J. Wang, Z. H. Zhan, W. J. Yu, Y. Lin, J. Zhang, T. L. Gu, and
J. Zhang, “Dynamic group learning distributed particle swarm
optimization for large-scale optimization and its application in
cloud workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6,
pp. 2715–2729, 2020.

[29] Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, and J. Wen, “Deadline-
constrained cost optimization approaches for workflow schedul-
ing in clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 12, pp.
3401–3412, 2017.

[30] M. S. Sanaj and P. M. Joe Prathap, “Nature inspired chaotic squirrel
search algorithm (CSSA) for multi objective task scheduling in an
IAAS cloud computing atmosphere,” Eng. Sci. Technol., vol. 23,
no. 4, pp. 891–902, 2020.

[31] H. Y. Shishido, J. C. Estrella, C. F. M. Toledo, and M. S. Arantes,
“Genetic-based algorithms applied to a workflow scheduling algo-
rithm with security and deadline constraints in clouds,” Comput.
Electr. Eng., vol. 69, pp. 378–394, 2018.

[32] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-
learning based dynamic task scheduling for energy-efficient cloud
computing,” Futur. Gener. Comp. Syst., vol. 108, pp. 361–371, 2020.

[33] G. Ismayilov and H. R. Topcuoglu, “Neural network based multi-
objective evolutionary algorithm for dynamic workflow schedul-
ing in cloud computing,” Futur. Gener. Comp. Syst., vol. 102, pp.
307–322, 2020.

[34] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344–1357, 2016.

[35] Q. Wu, M. C. Zhou, and J. Wen, “Endpoint communication
contention-aware cloud workflow scheduling,” IEEE Trans. Autom.
Sci. Eng., vol. 19, no. 2, pp. 1137–1150, 2022.

[36] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A performance analysis of EC2 cloud computing
services for scientific computing,” in Pro. Int. Conf. Cloud Comput.
CloudComp 2009, 2010, pp. 115–131.

[38] J. Hao, T. Jiang, W. Wang, and I. K. Kim, “An empirical analysis
of VM startup times in public IaaS clouds,” in Proc. IEEE 14th Int.
Conf. Cloud Comput. (CLOUD), 2021, pp. 398–403.

[37] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. IEEE 5th Int. Conf. Cloud
Comput. (CLOUD), 2012, pp. 423–430.

[39] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi, “Characterizing and profiling scientific workflows,” Futur.
Gener. Comp. Syst., vol. 29, no. 3, pp. 682–692, 2013.

[40] J. Zhou, J. Sun, M. Zhang, and Y. Ma, “Dependable scheduling
for real-time workflows on cyber-physical cloud systems,” IEEE
Trans. Ind. Inform., vol. 17, no. 11, pp. 7820–7829, 2021.

[41] L. Chen, X. Li, Y. Guo, and R. Ruiz, “Hybrid resource provisioning
for cloud workflows with malleable and rigid tasks,” IEEE Trans.
Cloud Comput., vol. 9, no. 3, pp. 1089–1102, 2021.

[42] J. Wang, X. Li, R. Ruiz, J. Yang, and D. Chu, “Energy utilization
task scheduling for MapReduce in heterogeneous clusters,” IEEE
Trans. Serv. Comput., vol. 15, no. 2, pp. 931–944, 2022.

Zaixing Sun received the M.S. degree in Control
Engineering from the Kunming University of Sci-
ence and Technology, Kunming, China, in 2019.
Currently, He is a Ph.D. candidate in Harbin
Institute of Technology, Shenzhen, China. His
research interests include cloud computing, in-
telligent optimization and scheduling.

Boyu Zhang is currently an undergraduate
student in School of Artificial Intelligence,
Changchun University of Science and Technol-
ogy, Changchun, China. His research interests
include algorithm design in cloud computing,
privacy-preserving technology in cloud comput-
ing, etc.

Chonglin Gu received PhD degree in computer
science and technology from Harbin Institute of
Technology, Shenzhen in 2018. After that, he
has been a postdoctoral fellow in the Chinese
University of Hong Kong, Shenzhen, China. He
is currently an assistant professor in the school
of computer science and technology in Harbin
Institute of Technology, Shenzhen. His research
interests include cloud computing, especially al-
gorithm design and system implementation.

Ruitao Xie received her PhD degree in Com-
puter Science from City University of Hong Kong
in 2014, and BEng degree from Beijing Univer-
sity of Posts and Telecommunications in 2008.
She is currently an assistant professor in College
of Computer Science and Software Engineer-
ing, Shenzhen University. Her research interests
include edge computing, AI networking, cloud
computing and distributed systems.

Bin Qian received the Ph.D. degree in control
science and engineering from Tsinghua Uni-
versity, Beijing, China, in 2009. From 2018 to
2019, he was a visiting professor at Manchester
Business School, The University of Manchester,
Manchester, UK. He is currently a Professor
with the School of Information Engineering and
Automation, Kunming University of Science and
Technology. His research interests include intel-
ligent optimization and scheduling.

Hejiao Huang received her PhD degree in Com-
puter Science from City University of Hong Kong
in 2004. She is currently a professor in Harbin
Institute of Technology, Shenzhen, China, and
previously was an invited professor at INRIA,
France. Her research interests include network
security, cloud computing security, trustworthy
computing, big data security, formal methods for
system design and wireless networks.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3196620

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 24,2022 at 07:26:07 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Workflow Scheduling Problem in Cloud
	Workflow Scheduling Algorithm in Cloud

	Cloud Workflow Scheduling Model
	Resource Model
	Resource Configurations
	Instance Lifecycle

	Workflow Application Model
	Deadline Model
	Workflow Scheduling

	The Proposed Workflow Scheduling Algorithm
	Task Type First Algorithm (T2FA)
	Task Topological Level
	DAG Structure Decomposition
	Task Scheduling and VM Selection
	Procedure for T2FA

	Delay Operation Based on Block Structure (DOBS)
	Instance Hibernate Scheduling Heuristic (IHSH)
	Time Complexity of ET2FA

	Performance Evaluation
	Simulation Environment
	Resource Environment
	Workflow Applications

	Baseline Algorithms
	Performance Results
	Comparison of Total Cost
	Comparison of Total Idle Rate
	Running Time of the Algorithms

	Conclusion
	References
	Biographies
	Zaixing Sun
	Boyu Zhang
	Chonglin Gu
	Ruitao Xie
	Bin Qian
	Hejiao Huang

