
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 71

Efficient and Provably Secure Data Selective
Sharing and Acquisition in Cloud-Based Systems

Kan Yang , Senior Member, IEEE, Jiangang Shu , Member, IEEE, and Ruitao Xie , Member, IEEE

Abstract— Towards the large amount of data generated every-
day, data selective sharing and acquisition is one of the most
significant data services in cloud-based systems, which enables
data owners to selectively share their data to some particular
users, and users to selectively acquire some interested data. How-
ever, it is challenging to protect data security and user privacy
during data selective sharing and selective acquisition, because
cloud servers are curious about the data or user’s interests, and
even send data to some unauthorized users or some uninterested
users. In this paper, we propose an efficient and provably secure
Data selective Sharing and Acquisition (DSA) scheme for cloud-
based systems. Specifically, we first formulate a generic data
selective sharing and acquisition problem in cloud-based systems
by identifying several design goals in terms of correctness,
soundness, security and efficiency. Then, we propose the DSA
scheme to enable data owners to control the access of their
data in a fine-grained manner, and enable users to refine the
data acquisition without revealing their interests. Technically,
a brand new cryptographic framework is developed to integrate
attribute-based encryption with searchable encryption. Finally,
we prove that the proposed DSA scheme is correct, sound, secure
in the random oracle model, and efficient in practice.

Index Terms— Cloud-based system, selective sharing, selective
acquisition, access control, searchable encryption.

I. INTRODUCTION

DUE to the economical, flexible and scalable storage
and computing resources, cloud computing is becom-

ing the most appropriate platform to store and process the
ever-increasing amount of data generated every day [1]. Data
sharing is one of the most fundamental services in cloud-based
systems, where data owners rely on the cloud server to share
data with other users. However, considering the confidentiality
of data, data owners prefer to selectively share their data to
some authorized users rather than all the users. On the other
hand, considering the huge amount of data, users also want
to selectively acquire some interested data instead of all the

Manuscript received 13 March 2022; revised 29 June 2022 and
19 September 2022; accepted 10 October 2022. Date of publication 27 October
2022; date of current version 7 December 2022. This work was supported in
part by NSF under Grant DGE-2146427 and in part by NSFC under Grant
62102204 and Grant 62272316. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Zekeriya Erkin.
(Corresponding authors: Kan Yang; Jiangang Shu.)

Kan Yang is with the Department of Computer Science, University of
Memphis, Memphis, TN 38152 USA (e-mail: kan.yang@memphis.edu).

Jiangang Shu is with the Peng Cheng National Laboratory, Department of
New Networks, Shenzhen 518000, China (e-mail: jiangangshu@gmail.com).

Ruitao Xie is with the College of Computer Science and Soft-
ware Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
drtxie@gmail.com).

Digital Object Identifier 10.1109/TIFS.2022.3216956

data shared by data owners. For example, existing healthcare
cloud service providers (e.g., Amazon, Google, Microsoft,
IBM, etc.) usually provide the service direct to the clinic or
hospital, which means that the clinic or hospital will manage
the healthcare data. However, it is a trend that patients are
more willing to take control of their healthcare data as the data
owners. Specifically, patients may selectively share their health
data to certain types of users, e.g., doctors, health assessors
in insurance companies or other patients suffering from the
same health problems, meanwhile doctors (e.g., cardiologists)
want to receive health data from selective patients (e.g., who
have cardiovascular problems). However, public cloud service
providers (e.g., Amazon, Google, Microsoft) cannot be fully
trusted to enforce the data selective sharing and selective
acquisition. Basically, there are two fundamental security and
privacy requirements, namely: 1) Data Confidentiality: The
shared data should not be known by the cloud server and any
unauthorized users; and 2) User Privacy: The users’ interests
should not be known by the cloud server.

To selectively share their data, data owners define access
policies of their data, but it is challenging to enforce these
access policies because cloud servers are not fully trusted to
evaluate access policies and make access decisions. A possible
approach is to encrypt the shared data and only authorized
users are given decryption keys. However, traditional public
key encryption methods are not suitable for data encryption,
because they usually produce multiple copies of ciphertexts for
each data in the system, the number of which is proportional to
the number of users. Alternatively, Attribute-Based Encryption
(ABE) [2], [3], [4] is a good option for data encryption here,
because: 1) it enables data owners to define fine-grained access
policies over attributes; 2) access policies are enforced by
cryptography rather than a trusted central server; and 3) it
produces a single copy of ciphertexts regardless of the number
of users. Based on ABE, many attribute-based access control
schemes have been proposed for cloud storage systems with
focus on access policy update [5] and attribute revocation [6].

However, the data encryption makes it difficult for data users
to selectively acquire data by searching on the encrypted data.
To cope with this problem, researchers propose to abstract a
set of keywords from the data before being encrypted, and
allow users to do the keyword search by providing a search
trapdoor. However, the keywords will also reveal some private
information of users to untrusted servers. For example, in a
healthcare system, interest in psychological data reveals that
the user or his/her relatives/friends may suffer from some

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4234-9596
https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-7198-9261

72 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

kind of mental illness. To protect user privacy, Searchable
Encryption (SE) schemes [7], [8], [9] have been developed to
encrypt the keywords and enable users to generate encrypted
trapdoors and search on encrypted keywords.

Individually, ABE and SE do a reasonably good job, but
we have not yet developed the ability to simultaneously
address data security and user privacy issues during data
selective sharing and acquisition. To integrate ABE and SE,
there are two approaches: Policy-then-Keyword evaluation and
Keyword-then-Policy evaluation.
• Policy-then-Keyword Evaluation will first evaluate the

access policies then evaluate the keyword matching.
Under this framework, several attribute-based searchable
encryption schemes [10], [11], [12], [13], [14], [15] have
been developed by applying ABE to control the keyword
search, where only the authorized users can do the
keyword search. However, when applying ABE to encrypt
the keyword, the output keyword index depends on the
access policy. In particular, when two files have the same
keyword but with different access policies, we cannot put
two files on the same keyword file list due to different
indices. The searching complexity for a single keyword
is O(Nw ·Np) where Nw is the total number of keywords
and Np is the max number of different access policies
for any single keyword.

• Keyword-then-Policy Evaluation will first evaluate the
keyword matching then evaluate the access policy. In such
scenario, the access policy is associated with each file
rather than just the keywords, so we can put different
files under the file list of the same keyword regardless
of their access policies. The searching complexity for a
single keyword is O(Nw + Np).

When a large number of access policies are associated
to the files with the same keyword set, Policy-then-
Keyword Evaluation is not as efficient as Keyword-then-Policy
Evaluation. To achieve Keyword-then-Policy Evaluation,
we cannot simply combine ABE and SE together (i.e.,
SE(keyword)||AB E(data)) [16], when the untrustworthy
remote server can skip the keyword matching process and
directly send data to those users who can decrypt successfully
but have no interests at all. In practice, the server is highly
incentive to conduct such behaviors, e.g., sends advertisement
to users who have no interests. More specifically, the cloud
server will launch the following bypass attacks: a) Index
Forging Attack. It tries to forge the index, which is easy if the
index can be generated by the public key; b) Index Swapping
Attack. It swaps the indices of two ciphertexts; c) Trapdoor
Swapping Attack. It uses the trapdoors of other users to match
the index and deliver the data to users with no interests.

To resist these attacks, our idea is to bind the data and the
index together, and tie the trapdoor and the transformed key
together as well, such that the ciphertext can be decrypted
correctly if and only if the index matches the trapdoor and
the attributes of users satisfy the access policy. Specifically,
we design a provably secure data selective sharing and
acquisition (DSA) scheme, where data owners encrypt both
data and keywords to obtain ciphertexts and indices; users
generate a transformed secret key and a trapdoor for data

query; the cloud server will first evaluate whether an index
can match the trapdoor, if not move to the next index; when
a keyword is matched, the cloud evaluates whether the access
policy associated with the ciphertext can be satisfied by the
attributes associated with the transformed secret key.

Considering that the cloud server will help users pre-decrypt
data, the indistinguishable security against chosen plaintext
attack (IND-CPA) is not sufficient for data security, because
IND-CPA is only defined for the “passive” eavesdropping.
In DSA scheme, we define a new data security model, called
selective and replayable indistinguishable security against
chosen ciphertext attack (selective IND-RCCA), which is
identical to IND-CCA2 except for allowing the cloud server to
generate new ciphertexts that decrypt to the same plaintext as
a given ciphertext. We also define a relaxed version of indis-
tinguishable security against chosen keyword attack (selective
IND-CKA) for index security. Toward the trapdoor security,
we define a weaker security model which only requires the
trapdoor generation algorithm to be one-way (when given the
trapdoor, it is hard to know the inside keyword).

In summary, as shown in Table I, the novelty of our DSA
scheme includes: 1) our DSA scheme applies the keyword-
then-policy evaluation framework so that the computation
complexity is improved from O(Nw · Np) to O(Nw + Np);
2) our DSA scheme can resist the keyword matching bypass
attacks and achieve the soundness by binding the data and the
index together and integrating the trapdoor and the transformed
key together; 3) our DSA scheme enables the cloud server to
evaluate both the keywords matching and attribute matching,
and further help partially decrypt the data when both condi-
tions are met, which can significantly reduce the computation
cost on the users. The main contributions are summarized as
follows.

1) We formulate a generic data selective sharing and
acquisition problem in cloud-based systems and identify
several design goals in terms of correctness, soundness,
security and efficiency.

2) We propose the DSA scheme that enables: a) data
owners to control the data sharing in a fine-grained way;
b) users to refine the data acquisition without revealing
their interests; and c) the cloud server to partially decrypt
the data if the data is interesting to the user and the user
has privileges to access the data.

3) We formally define the correctness, soundness and secu-
rity of the DSA scheme, and prove that it is correct,
sound, secure under the security models and random
oracle model, and efficient in practice.

The remaining part of this paper is organized as follows.
In Section II, we give the literature review on the data sharing
and acquisition in cloud storage systems. Before describing
the system model and design goals in Section III, we describe
some preliminary definitions in Section IV. In Section V,
we define the DSA scheme and its correctness, soundness
and security. The detailed construction of DSA scheme is
proposed in Section VI. The correctness and soundness are
proved in Section VII, and the security proof and performance
analysis are given in Section VIII. Then, we summarize the

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT AND PROVABLY SECURE DATA SELECTIVE SHARING AND ACQUISITION 73

TABLE I

COMPARISON WITH EXISTING SCHEMES

paper in Section IX. In Appendix A and Appendix B, the
detailed security proofs are described.

II. RELATED WORK

To protect the data from being seen by the cloud server
or other unauthorized users, data are usually encrypted by
the data owner before sending to the cloud. Attribute-
based Encryption (ABE) [2], [3], [4] is a promising data
encryption technique. There are two complementary forms
of ABE, namely Key-Policy ABE (KP-ABE) [2] and
Ciphertext-Policy ABE (CP-ABE) [3], [4]. Based on ABE,
several attribute-based access control (ABAC) schemes [18],
[19] have been proposed to ensure the data confidentiality in
cloud-based systems. Specifically, ABAC allows data owners
to define an access structure on attributes and encrypt the data
under this access structure, such that data owners can define
the attributes that the user needs to possess in order to decrypt
the ciphertext.

To support the keyword search on encrypted data,
Song et al. [7] proposed one of the first schemes for search-
ing on encrypted data, which leverages symmetric key
techniques and only allows the data encryptor to search.
Boneh et al. [8] proposed Public Key Encryption with Key-
word Search (PEKS), where anyone can encrypt the data
by using the public key while only allow the owner of the
corresponding secret key to search. To enable multiple users
to search on the encrypted data, Hwang and Lee [20] proposed
a multiuser public key encryption with conjunctive keyword
search scheme. Camenisch et al. [21] proposed public key
encryption with oblivious keyword search (PEOKS) where
users can obtain trapdoors from the secret key holder without
revealing the keywords. Li et al. [22] propose a multi-keyword
ranked search on encrypted data by employing a secure
K-nearest neighbors scheme.

Due to the advantages of ABE, attentions are paid to
combine ABE with PEKS by constructing attribute-based
encryption with keyword search (ABEKS) schemes [10],
[11], [12], [13], [14], [15]. In [11], the authors propose an
attribute-based proxy re-encryption scheme that can re-encrypt
both the index and the trapdoor into the same key that can be
evaluated by the cloud. In [23], an extended CP-ABE scheme
is proposed to support single keyword search. However, the
extension of keyword search (i.e., the query secret key skquery)
will break the security of the CP-ABE. It is easy to get the
master secret key of the system msk = gα from the secret key
of ABE skabe and the query secret key skquery by calculating
skabe/skquery = gαgat/(gat guα) = (gα)1−u , because u is

Fig. 1. Cloud-based data selective sharing and acquisition system.

selected by users. Once the master key is obtained, the user
can decrypt all the ciphertexts regardless of his/her attributes.
In [13] and [14], KP-ABE is employed to encrypt the keyword
with a set of attributes and construct the trapdoor under access
policies. In [10], [12], and [15], CP-ABE is used to encrypt the
keywords. However, in data selective sharing and acquisition,
anyone is allowed to search, and the access policy is defined
on the data encryption not on the index encryption. Moreover,
the soundness is not considered in previous works, where the
cloud server can bypass the trapdoor and still deliver the data
to users who do not have interests.

The soundness challenge was initially introduced by an
index swap attack (swapping the indices of two messages)
in [17] when people consider to combine Public Key Encryp-
tion (PKE) with Public Key Encryption with Keyword Search
(PEKS). As mentioned in [17], a trivial solution is to simply
append an authentication tag generated with a shared key
between the data owner and data user. While it works, the
solution destroys the asymmetric nature of public key encryp-
tion. The authors in [17] proposed a solution to combine PEKS
with ElGamal based on the MAC produced with identity-based
encryption [24]. However, the security requires the PKE is
secure against plaintext checking attack (PCA). In [25], the
authors propose a generic combination of PEKS and PKE,
but still with an MAC. In this paper, we propose an integrate
framework that internally ties the attribute-based encryption
with searchable encryption, without needing any MAC.

III. SYSTEM MODEL AND DESIGN GOALS

A. System Model and Threat Model

We consider the cloud-based data selective sharing and
acquisition system, as shown in Fig.1, which consists of four
entities: data owners, the cloud server, users, and an authority.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

74 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

1) Data Owners: Data owners are the owners of data and
in most cases are also the producers of data. They will
selectively share their data to users, such that users with
different privileges have different views of the data. However,
they do not trust the cloud server to control the sharing of
their data. Hence, before sending data to the cloud server,
data owners define an access policy for the shared data and
encrypt them under this access policy. They also generate a
set of indices for the shared data. Data owners are assumed
to be fully trusted in the system.

2) Cloud Server: The cloud server stores the data and
is responsible for evaluating whether the index can match
the trapdoor and whether the user’s attributes can satisfy
the access policy. If both of these two conditions can be
satisfied, the cloud server will help users pre-decrypt the data
with the transformed secret key provided by the users together
with the trapdoor. We assume that the cloud will follow the
protocol to pre-decrypt and deliver those data which can satisfy
both of the conditions, but it is also curious about the data
shared by data owners. Moreover, we assume that the cloud
server will try to send data to those unauthorized users or send
data to those uninterested users.

3) Users: Each user holds a set of attributes that describe
the role or identity of the user in the system. Accordingly,
the user receives a secret key that is associated with the
attributes. To selectively acquire his/her interested data, the
user generates a trapdoor (used to filter the data) and a
transformed his/her secret key (used to pre-decrypt the data),
and send both of them to the cloud in one query. Users can
collude with each other, but they will not send their secret
keys to the cloud server or other adversaries.

4) Authority: The authority is the key management in the
system. Specifically, it is responsible for managing the users’
roles in the system by assigning different sets of attributes to
them. According to the granted attributes of each user, it then
issues a corresponding secret key to the user. It also publishes
the public key that can be used for data encryption and index
generation. We assume that the authority is fully trusted in
the system, and there exists a secure communication channel
between the authority and each user. We assume the authority
will not collude with the cloud server or other adversary.
For example, the trusted authority can be some agencies that
are managed and audited by the government or other public
organizations (similar to root DNS servers).

B. Design Goals

The ultimate goal of this paper is to design an efficient and
provably secure data selective sharing and selective acquisition
scheme for cloud-based systems, which allows data owners to
selectively share their data and users to selectively acquire
their interested data. Specifically, the scheme should achieve
several design goals in terms of correctness, soundness, secu-
rity and efficiency.

• Correctness: When access policy associated with the data
can be satisfied by user’s attributes, and the index of the
data can match the trapdoor provided by the user, the data
can be decrypted correctly by the user.

• Soundness: Users should not receive any data that cannot
be decrypted or have no interests.

• Security: The data should be kept private against the
cloud server or other unauthorized users. Neither the
index nor the trapdoor should reveal user’s interests.

• Efficiency: The scheme should not involve too much com-
munication overhead and computation cost, especially for
the computation cost on users who use mobile devices
with limited resources to access data.

IV. PRELIMINARIES

A. Linear Secret-Sharing Scheme (LSSS) Structure

Definition 1 (LSSS [26]): A secret-sharing scheme � over
a set of parties P is called linear (over Zp) if

1) The shares for each party form a vector over Zp .
2) There exists a matrix M called the share-generating

matrix for �. The matrix M has n rows and l columns.
For all i = 1, · · · , n, the i -th row of M is labeled by a
party ρ(i) (ρ is a function from {1, · · · , n} to P). If the
column vector v = (s, r2, · · · , rl) is considered, where
s ∈ Zp is the secret to be shared and r2, · · · , rl ∈ Zp

are randomly chosen, then Mv is the vector of n shares
of the secret s according to �. The share (Mv)i belongs
to party ρ(i).

According to the above definition, the LSSS structure enjoys
the linear reconstruction property: Suppose that � is an LSSS
for the access structure A. Let S ∈ A be any authorized set, and
let I ⊂ {1, 2, · · · , n} be defined as I = {i : ρ(i) ∈ S}. Then,
there exist constants {ci ∈ Zp}i∈I , s.t. for any valid shares {λi }
of a secret s according to �, we have

∑
i∈I ciλi = s. These

constants {ci } can be found in polynomial time with the size
of the share-generating matrix M , and for unauthorized sets,
no such constants {ci } exist.

B. Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with
the same prime order p. A bilinear pairing is a mapping e :
G1 ×G2 → GT with the following properties:
• Bilinearity: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈
G2 and a, b ∈ Zp .

• Non-degeneracy: There exist u ∈ G1, v ∈ G2 such that
e(u, v) �= I , where I is the identity element of GT .

• Computability: e can be efficiently computed.

C. Decisional q-Parallel Bilinear Diffie-Hellman Exponent
Assumption

Definition 2 (Decisional q-parallel BDHE [4]): Let G and
GT be two groups of order p, where p > 2λ is a prime.
Suppose that there exists a bilinear map e : G × G → GT .
Let a, s, b1, · · · , bq ∈ Zp be chosen randomly and g be a
generator of G. If an adversary is given by

�y = (g, gs, ga, · · · , g(aq), , g(aq+2), · · · , g(a2q),

∀1≤ j≤q gs·b j , ga/b j , · · · , g(aq/b j), ,

g(aq+2/b j), · · · , g(a2q/b j),

∀1≤ j,k≤q,k �= j ga·s·bk/b j , · · · , g(aq ·s·bk/b j)),

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT AND PROVABLY SECURE DATA SELECTIVE SHARING AND ACQUISITION 75

it must be hard to distinguish a valid tuple e(g, g)aq+1s ∈ GT

from a random element R in GT .
An algorithm B that outputs z ∈ {0, 1} has advantage ε in
solving q-parallel BDHE in G if
∣∣∣Pr[B(�y, T =e(g, g)aq+1s) = 0]−Pr[B(�y, T = R) = 0]

∣∣∣ ≥ ε.

Definition 3: The decisional q-parallel BDHE assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the q-parallel BDHE problem. (It is
generically secure as shown in Appendix C of [4].)

D. Decisional Linear (DLIN) Assumption

Definition 4 (DLIN): The challenger chooses a group G

of prime order p. Let a, b, x, y ∈ Zp be chosen ran-
domly and g, h be generators of G. When given �z =
(g, h, ga, gb, gax , gby), the adversary must distinguish a valid
tuple hx+y ∈ G from a random element R in G. An algorithm
B that outputs z ∈ {0, 1} has advantage ε in solving DLIN in
G if

∣∣Pr[B(�z, T = hx+y) = 0] − Pr[B(�z, T = R) = 0]∣∣ ≥ ε.

Definition 5: The decisional linear (DLIN) assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the DLIN problem.

V. DEFINITIONS

A. Definition of DSA

To meet all the requirements illustrated in Section III-B,
we define the data selective sharing and acquisition scheme as

Definition 6 (DSA): A Data Selective Sharing and Acqui-
sition scheme consists of the following algorithms:

• Setup(1λ) → (msk, pk). The setup algorithm takes the
security parameter λ as input. It outputs the master secret
key msk and the public key pk for the system.

• SKGen(msk, pk, Su)→ sku . The secret key generation
algorithm takes as inputs the master secret key msk, the
public key pk, and a set of attributes Su assigned to each
user u. It outputs a secret key sku for each user u.

• Encrypt(pk, (m, w), A) → (CT, I). The encryption
algorithm takes as inputs the public key pk, the data m
from the data space M and a keyword w from the key-
word space W describing the data,1 and an access policy
A defined over attributes. It consists of two subroutines:

– IndexGen(pk, w) → (I, RI). The index generation
subroutine outputs the data index I corresponding
to the keyword w and a random index stamp RI

associated with this index. RI will be used for
encrypting each data in the keyword file list.

– DataEnc(pk, m, A, RI)→ CT. The data encryption
subroutine takes as input the random index stamp RI

and outputs a ciphertext CT.

1For each keyword w in the keyword sets, we first run the IndexGen
to generate a single index regardless of access policies. Then, we run the
DataEnc algorithm to encrypt all the data in the file list according to their
access policies. Without loss of generality, here we focus on a simple case
with single keyword and single data.

It outputs a tuple (CT, I), where CT is the data ciphertext
and I is the index.

• Query(sku, pk, w)→ (TD, tku, ŝku). The trapdoor gen-
eration algorithm takes as inputs the user’s secret key sku ,
the public key pk and a keyword w describing his/her
interests. It also consists of two subroutines:

– SKTran(sku)→ (tku, ŝku). The secret key transfor-
mation subroutine outputs a transformed secret key
tku and a decryption key ŝku .

– TDGen(sku, ŝku, pk, w)→ TD. The trapdoor gen-
eration subroutine takes the decryption key ŝku as
one of its inputs, and generates the trapdoor TD
associated with this decryption key.

It outputs the trapdoor TD, the transformed secret key
tku , and the corresponding decryption key ŝku .

• Test(pk, (TD, I), (tku, CT, A)) → ĈT or ⊥. The test
algorithm takes as inputs the public key pk, the pair
of trapdoor TD and the index I, the transformed secret
key tku , the data ciphertext CT and its associated access
policy A. It also contains two testing subroutines:

– KTest(pk, TD, I) → (R, Q) or ⊥. The keyword
test subroutine evaluates whether the keyword in
the trapdoor TD can match the keyword in the
index I. If they do not match, it terminates all the test
algorithm and exits with a symbol ⊥. Otherwise, the
subroutine will recover the random element R used
during the encryption, as well as another element Q
containing the randomness of the index.

– ATest(pk, tku, CT, A, R, Q) → ĈT or ⊥. The
attribute test subroutine takes the random elements
(R, Q) as part of inputs. It first evaluates whether
the attributes contained in the transformed secret key
tku can match the access policy A associated with the
ciphertext CT. If they do not match, it terminates the
test algorithm and exits with a symbol ⊥. Otherwise,
it outputs the pre-decrypted ciphertext ĈT.

• Decrypt(ŝku, ĈT)→ m. The decryption algorithm takes
as inputs the decryption key ŝku and the pre-decrypted
ciphertext ĈT. It outputs the data m.

B. Definition of Correctness
The correctness of the scheme requires that if the keyword

in the trapdoor can match the keyword in the index, and
the user’s attributes can satisfy the access policy associated
with the data, then the user can finally decrypt the data
successfully.

Definition 7 (Correctness): A data selective sharing and
selective acquisition scheme DSA is correct, if ∀λ ∈ N, and
Su satisfying A, we have

Pr[Decrypt
(
ŝku, Test(pk, (TD, I), (tku, CT, A))

) = m] = 1,

where the probability is taken over the choice of

(msk, pk) ← Setup(1λ),

sku ← SKGen(msk, pk, Su),

(CT, I) ← Encrypt(pk, (m, w), A),

(TD, tku, ŝku) ← Query(sku, pk, w).

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

C. Definition of Soundness

In DSA, we follow the Keyword-then-Policy evaluation.
What happens if a malicious cloud directly sends the data to
those users who can decrypt (policy match) but has no interests
(keyword does not match). This cannot be covered by security.
So, we define the soundness to cover three cases as follows.

• Case 1 (Soundness of KTest): If the keyword inside the
trapdoor does not match the keyword inside the index,
then the probability to pass the KTest is negligible.

• Case 2 (No Bypass of KTest): If the data can be decrypted
but are not interested by this user, the cloud server should
not be able to correctly pre-decrypt the data for this user.

• Case 3 (Soundness of Decrypt): The pre-decrypted data is
user-specific, which means that a user cannot successfully
decrypt a pre-decrypted data generated for a different user
with non-negligible probability.

D. Definitions of Security

We now give formal definitions of security for the data
selective sharing and selective acquisition scheme.

1) Data Security: To prevent the cloud server and other
adversaries from “passive” eavesdropping the data shared by
the owners, the data encryption subroutine should be seman-
tically secure against chosen plaintext attacks (IND-CPA).
When considering the whole encryption algorithm (containing
both the data encryption subroutine and the index generation
subroutine), we employ a relaxed version of IND-CPA, called
selective IND-CPA, where both of the two challenged plain-
texts have the same keyword that does not equal to either
challenged plaintext (i.e., (m0, w), (m1, w), and w �= m0,
w �= m1). The keyword is selected in an initial phase at the
very beginning of the security game.2

Besides launching the “passive” eavesdropping, the cloud
server is also required to help users pre-decrypt the data
ciphertext (i.e., transform the original data ciphertext to
another data ciphertext that can be decrypted more easily).
We employ a relaxed version of IND-CCA2 security (semantic
security against adaptive chosen ciphertext attacks) defined
in [27], called IND-Replayable CCA (IND-RCCA) security,
which is identical to IND-CCA2 except for allowing the cloud
server to generate new ciphertexts that decrypt to the same
plaintext as a given ciphertext. This IND-RCCA model has
also been applied in [28] for the decryption outsourcing of
ABE. Following the similar definition, we define the Selec-
tive IND-RCCA Security for the data encryption through a
Selective-IND-RCCA-Game.

Definition 8 (Selective-IND-RCCA-Game): The
Selective-IND-RCCA-Game is defined between a challenger
C and an adversary A whose running time is probabilistic
polynomial in a security parameter λ as follows.

• Init: A gives the challenge access policy A
∗ and the

challenge keyword w∗ to C.
• Setup: C runs Setup(1λ) to generate (msk, pk), and

gives pk to A.

2We can also define a stronger selective IND-CPA, where the keyword is
selected during the challenge phase.

• Phase 1: C initializes an empty table T (recording all
transformed secret key queries), an empty set D (record-
ing the corrupted users), and an integer j = 0. A can
adaptively make any of the following queries:

– TKQuery(Sj): A queries the transformed key by
giving a set of attributes Sj . C sets j := j + 1 and
runs the SKGen to compute the corresponding secret
key sk j . C then transforms sk j into the transformed
secret key tk j and the decryption key ŝk j . C stores
the entry (j, Sj , ŝk j , tk j) and returns tk j to A.

– DKQuery(i): A cannot corrupt any key responding
to the challenge access policy A∗. If there exists an
i th entry in table T , C checks whether Si can satisfy
A
∗. If not, it sets D := D ∪ i and obtains the entry

(i, Si , ŝki , tki). Then, it returns the decryption key3

ŝki to A. If no such entry exists or Si can satisfy
A∗, it then returns ⊥.

– Decrypt(i, CT, A): If there exists an i th entry
(i, Si , ŝki , tki) in table T and Si can satisfy A, C

decrypts the CT by running Test and Decrypt. Then,
it returns the output to A. Otherwise, it returns ⊥.

• Challenge: A submits two equal-length messages m0 and
m1, neither of which equals to the challenge keyword
w∗. C flips a random coin τ , and encrypts mτ under A∗
and generates the index for keyword w∗. Then, both the
ciphertext CT and the index I are given to A.

• Phase 2: Phase 1 is repeated with the restriction that A

cannot make a trivial decryption query, which means that
Decrypt queries will be answered as in Phase 1, except
that if the outputs would be either m0 or m1, then C

responds with a special message test instead. 4

• Guess: A outputs a guess τ ′ of τ .

We define A’s advantage in Selective-IND-RCCA-Game by

AdvSelective-IND-RCCA-Game
DS A,A = 2Pr[τ ′ = τ] − 1.

2) Index Security: To protect the keyword security in
the index, we require the adversary cannot distinguish two
indices generated from two equal-length keywords, unless
any corresponding trapdoor is revealed. We also require the
index generation should be semantically secure against chosen
keyword attacks (IND-CKA), where trapdoors can be queried
adaptively. Considering that the index generation is only
one subroutine of the encryption algorithm, we assume that
both of the two challenge keywords are associated with the
same challenge data. By selecting the challenge data in an
initial phase, we define Selective IND-CKA security via the
following Selective-IND-CKA-Game.

Definition 9 (Selective-IND-CKA-Game): The Selective-
IND-CKA-Game is defined between a challenger C and an
adversary A whose running time is probabilistic polynomial
in a security parameter λ as follows.

• Init: A gives the challenge data m∗ to C.

3The decryption key query has already implied secret key query, as the
secret key can be constructed by the transformed key and the decryption key.

4Instead of comparing the ciphertext (c = c∗) in CCA game, this RCCA
security game compares the decrypted plaintexts.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT AND PROVABLY SECURE DATA SELECTIVE SHARING AND ACQUISITION 77

• Setup: C runs the Setup(1λ) algorithm to generate
(msk, pk). It gives pk to A.

• Phase 1: A is allowed to query trapdoors for any key-
word w j .

• Challenge: A submits two equal-size keywords w0, w1.
The only restriction is that neither w0 nor w1 has been
queried in Phase 1. C first flips a random coin τ , and
responses the index Iτ to A by running the Encrypt
algorithm.

• Phase 2: Same as Phase 1 as long as the challenged
keywords are not queried.

• Guess: A outputs a guess τ ′ of τ .

We define A’s advantage in Selective-IND-CKA-Game by

AdvSelective-IND-CKA-Game
DS A,A = 2Pr[τ ′ = τ] − 1.

3) Trapdoor Security: As for the keyword privacy in the
trapdoor, if the index is generated with private keys, then
we can also define that the trapdoor should be semantically
secure against chosen keyword attacks (IND-CKA). Similar
to the index security, intuitively, the trapdoor security requires
that the adversary is not able to distinguish two trapdoors of
two equal-length keywords, unless any corresponding index is
revealed.

However, if the index can be generated with public key, it is
impossible to achieve the indistinguishable security against
chosen keyword attacks (IND-CKA) unless the keyword space
is sufficient large. This is called offline keyword-guessing
attack, where the adversary can generate indices by guessing
keywords, and use them to distinguish the two challenge
trapdoors. Our DSA scheme is a public key encryption scheme
where the index generation only needs the public key. Here,
we define a weaker security model for trapdoor security,
which only requires that the trapdoor security is one-way
(when given the trapdoor, it is hard to know the inside
keyword).

Definition 10 (Selective-IND-RCCA): A DSA scheme
is Selective-IND-RCCA secure if all probabilistic
polynomial-time adversaries have at most a negligible
advantage in the above Selective-IND-RCCA-Game.

Definition 11 (Selective-IND-CKA): A DSA scheme
is Selective-IND-CKA secure if all probabilistic
polynomial-time adversaries have at most a negligible
advantage in the above Selective-IND-CKA-Game.

Definition 12 (DSA Security): A DSA scheme is secure
if it is Selective-IND-RCCA secure, Selective-IND-CKA
secure and the trapdoor generation is one-way.

Remark 1: In the selective security definition, we assume
that w0 = w1 or m0 = m1. We say that this security definition
has already implied the case where w0 �= w1 and m0 �= m1:

• (m0, w0) IND (m0, w1): Selective IND-CKA for index
(when adversary cannot get the tokens for W0 and W1)

• (m0, w1) IND (m1, w1): Selective IND-CPA for data
(when adversary cannot get sufficient attributes)

Then, we can say: (m0, w0) IND (m1, w1).

VI. CONSTRUCTION OF DSA
A. System Initialization by Authority

The authority initializes the system by running the setup
algorithm as

Setup(1λ) → (msk, pk). It chooses two multiplicative
groups G and GT with the same prime order p(p > 2λ) and
the bilinear map e : G × G → GT between them. Let g be
a generator of G. Let H : {0, 1}∗ → G be the hash function
that maps an arbitrary attribute to an element in group G.
It also defines a set of hash functions H0 : {0, 1}λ → G,
H1 : GT → {0, 1}λ, H2 : GT → {0, 1}∗, H3 : {0, 1}∗ → Z∗p ,
and H4 : {0, 1}∗ → {0, 1}λ. It chooses random numbers
α, β, a, b, c ∈ Z∗p and sets the master secret key as
msk = (α, β, a, b, c). The public key is set as

pk = (p, g,G,GT , e, H, H0, H1, H2, H3, H4,

ga, gb, gabc, gβ, e(g, g)α).

According to the attributes assigned to the data owner, the
authority generates a corresponding secret key for the owner
by running the secret key generation algorithm as

SKGen(msk, pk, Su) → sku . For each user u who pos-
sesses the attribute set Su , it chooses a random number rsub ∈
Z∗p and generates the secret key as

sku =
(

(ac, bc), K = gαgβu, Ka = g
α
a g

βu
a ,

Kb = g
α
b g

βu
b , K ′ = gu, ∀x ∈ Su : Kx = H (x)u

)
.

where u is randomly chosen from Z∗p .

B. Data Encryption by Owners
To encrypt the data, the data owner first defines an access

policy over attributes of users. In our construction, the access
policy is described by an LSSS structure (M, ρ), where M is
an n×l access matrix and ρ maps the rows of M to attributes.
The data owner then runs the following encryption algorithm
to encrypt the data m.5 We follow the construction of [28]
to transform the selective CPA secure CP-ABE to be RCCA
secure.

Encrypt(pk, (m, w), (M, ρ))→ (CT, I). It consists of two
subroutines:
• IndexGen(pk, w) → (I, RI). The index generation sub-

routine first selects a random string R← {0, 1}λ and two
random numbers s1, s2 ∈ Z∗p and sets st = s1+ s2. Then,
it computes the ciphertext of the keyword w as

cw = e
(

H0(w), gabc
)st

.

Then, it outputs the index as

I =
(

I1 = R ⊕ H1(cw), I2 = H2(cw),

L1 = (gb)s1, L2 = (ga)s2,

L3 = gst · H0(w)st
)

and the random index stamp RI = (R, st).

5In real application, data m is first encrypted with a content key by using
symmetric encryption methods. The content key is further encrypted by
running the encryption algorithm Encrypt. For simplification, we directly use
the data m.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

• DataEnc(pk, m, (M, ρ), RI) → CT. Following the
RCCA construction in [28], the data encryption sub-
routine first chooses a random string k ← {0, 1}λ and
computes sa = H3(k, m) as the encryption secret. Then,
it shares sa through a random vector �v = (sa, y2, · · · , yl).
For i = 1 to n, it computes λi = Mi · �v, where Mi is
the vector corresponding to the i -th row of M . It takes
as input the random index stamp (R, st) and outputs the
ciphertext as

CT =
(

C0 = m ⊕ H4(k),

C = k · e(g, g)αsa , C ′ = gsa+st · H0(R),

{Ci = gβλi · H (ρ(i))−ri , Di = gri }i∈[1,n]
)
.

where r1, . . . , rn are randomly chosen in Z∗p .

The data owner then uploads the data and its index to the cloud
server in I||CT||(M, ρ). Note that the access policy (M, ρ) is
explicitly associated with the ciphertext.

C. Query Generation by Users

To generate a query for a keyword, the users will run the
following algorithm:

Query(sku, pk, w∗) → (TD, tku, ŝku). It also consists of
two subroutines:
• SKTran(sku) → (tku, ŝku). The secret key transforma-

tion subroutine selects a random number z ∈ Z∗p and
transforms the user’s secret key sku to a transformed
secret key tku as

tku =
(

K̂ = (K)z = gαzgβuz, K̂ ′ = (K ′)z = guz,

∀x ∈ Su : K̂x = (Kx)
z = H (x)uz

)

and set the decryption key as ŝku = z.
• TDGen(sku, ŝku, pk, w) → TD. The trapdoor genera-

tion subroutine takes the decryption key ŝku as one of
its inputs, and generates the trapdoor TD by randomly
choosing t1, t2 ∈ Z∗p:

TD =
(

T1 = gact1 H0(w
∗)ac+act1,

T̂1 = (Kb)
z(gH0(w

∗))act2,

T2 = gbct1 H0(w
∗)bc+bct1,

T̂2 = (Ka)z(gH0(w
∗))bct2,

T3 = (gabc)t1, T̂3 = (gabc)t2
)

It sends the query (TD, tku) to the cloud server, and keeps the
corresponding decryption key ŝku .

D. Query Test by Cloud Server

Upon receiving the data and the query, the cloud server will
test whether the keyword in the index can match the keyword
in the trapdoor, and whether the attributes associated with the
transformed secret key can match the access policy associated
with the data ciphertext by running the test algorithm as

Test(pk, (TD, I), (tku, CT, A)) → ĈT or ⊥. The test
algorithm also contains both two testing subroutines: keyword
test subroutine and attribute test subroutine.
• KTest(pk, TD, I) → (R, Q) or ⊥. The keyword test

subroutine evaluates whether the keyword in the trapdoor
TD can match the keyword in the index I. It first recovers
the keyword ciphertext as

cw∗ = e(T1, L1) · e(T2, L2)

e(T3, L3)
. (1)

Then, it tests whether H2(cw∗)
?= I2. If not, it aborts

the test algorithm with a symbol ⊥. Otherwise, we have
cw∗ = cw . Then, the subroutine will recover the ran-
dom element R used during the encryption as R =
I1 ⊕ H1(cw∗), and another element Q containing the
randomness of the index

Q = e(T̂1, L1) · e(T̂2, L2)

e(T̂3, L3)
. (2)

It outputs (R, Q).
• ATest(pk, tku, CT, A, R, Q) → ĈT or ⊥. The attribute

test subroutine takes as inputs the random elements
(R, Q). It first evaluates whether the attributes contained
in the transformed secret key tku can match the access
policy (M, ρ) associated with the ciphertext CT. If they
do not match, it terminates the test algorithm and exits
with a symbol ⊥. Otherwise, the subroutine can find a set
of constants {ci }, s.t.,

∑
i∈I ci Mi = (1, 0, · · · , 0), where

I is defined as I = {i : ρ(i) ∈ Su}. Recall λi = Mi · �v ,
we have

∑
i ciλi = sa . It then computes

P =
∏
i∈I

(
e(Ci , K̂ ′) · e(Di , K̂ρ(i))

)ci
(3)

and Ĉ ′ = C ′/H0(R). Finally, the subroutine computes

Ĉ = e(Ĉ ′, K̂)

P · Q = e(g, g)αzsa (4)

It outputs the pre-decrypted ciphertext as

ĈT = (C0 = m ⊕ H4(k), C = k · e(g, g)αsa,

Ĉ = e(g, g)αzsa).

E. Data Decryption by Users

Upon receiving the pre-decrypted data, the user can effi-
ciently decrypt the data by running the decryption algorithm:

Decrypt(ŝku, ĈT)→ m. The decryption algorithm takes as
inputs the decryption key ŝku and the pre-decrypted ciphertext
ĈT = (C0, C, Ĉ). It first computes

k = C

Ĉ
1

ŝku

= k · e(g, g)αsa

(e(g, g)αzsa)
1
z

.

Then, it recovers the data

m = C0 ⊕ H4(k).

Now, it recomputes the s′ = H3(k, m) and checks whether

the following two equations can hold: C
?= k · e(g, g)αs ′ and

Ĉ
?= e(g, g)αs ′z . If it does, the data m is accepted.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT AND PROVABLY SECURE DATA SELECTIVE SHARING AND ACQUISITION 79

It is easy to find that the user only performs simple
decryption computation, which is independent with the number
of attributes in the ciphertext. The lightweight decryption
algorithm can be easily implemented in many mobile devices
with limited computation resources.

VII. CORRECTNESS AND SOUNDNESS PROOFS

A. Correctness Proof
Correctness of KTest: cw∗ can be computed as in Eq. 1.

The details is shown in Eq. 5.
If the keyword in the trapdoor matches the keyword in the
index, then

cw∗ = e(H0(w
∗), g)abcst = e(H0(w), g)abcst = cw

So, we have

H (cw∗) = H (cw).

Correctness of ATest: If w∗ = w, Eq. 2 can be expressed
as shown in Eq. 6.
and the Eq. 3 can be computed as

P =
∏
i∈I

(
e(Ci , K̂) · e(Di , K̂ρ(i))

)ci

=
∏
i∈I

(
e(gβλi · H (ρ(i))−ri , guz) · e(gri , H (ρ(i))uz)

)ci

=
∏
i∈I

e(g, g)βuzciλi

= e(g, g)βuzsa

Then, Eq. 4 can be verified as

Ĉ = e(Ĉ ′, K̂)

P · Q
= e(gsa · gst , gαzgβuz)

e(g, g)βuzsa · e(g, g)αzst · e(g, g)βuzst

= e(g, g)αzsae(g, g)αzst · e(g, g)βuzsa · e(g, g)βuzst

e(g, g)βuzsa · e(g, g)αzst · e(g, g)βuzst

= e(g, g)αzsa

B. Soundness Proof

Here, we show how to resist the bypass attacks defined
in the soundness. We first prove the case 1 of soundness
(soundness of KTest). Due to the collision resistance of hash
functions, we say that two keywords w∗, w ∈W, w∗ �= w, the
probability that these two keywords get the same hash values
is negligible in λ. So, if w∗ �= w, the probability of passing
KTest is also negligible.

For case 2 of soundness, suppose the index Iw can be
matched by using another trapdoor TDu2,w generated by user
u2, then the cloud server can use this trapdoor to pass the
KTest and get the keyword ciphertext cw by Eq. 1. However,
obtaining cw does not help the pre-decryption, because the
computation of component Q also requires the match of
keywords in both index Iw and the trapdoor TDu1,w∗ . From
Eq. 2, we can see that if H0(w

∗) �= H1(w), the component
e(H0(w

∗), g)abct2st and e(H0(w), g)abct2st cannot be canceled.

Therefore, only when H0(w
∗) = H0(w),w∗ �= w, Q can be

recovered to e(g, g)βuzst .
For case 3 of soundness, let’s see what will happen if it

uses the transformed secret key of user u2 to compute the
component Q. Note that both P and Q are closely related
to u and z, which are user-specific. If the cloud server uses
trapdoor and transformed secret key from another user u2,
then the pre-decrypted ciphertext cannot be decrypted correctly
unless the decryption keys of both user u1 and user u2 are the
same.

VIII. SECURITY PROOF AND PERFORMANCE EVALUATION

A. Security Proof

We prove that the DSA scheme is secure in the random
oracle model [29] by the following theorems:

Theorem 1: The DSA scheme is Selective-IND-RCCA
secure in random oracle model, if the decisional q-parallel
Bilinear Diffie-Hellman assumption holds.

Proof: The encryption algorithm in DSA scheme is
constructed based on an adapted CP-ABE [4], which is proved
to be selective CPA secure under the decisional q-parallel
BDHE assumption. We also follow the construction of [28]
to transform the selective CPA secure CP-ABE to be RCCA
secure. Now, we prove that if there exists a polynomial time
adversary A can play the Selective-IND-RCCA-Game with
non-negligible advantage ε, we can build a simulator B that
can break the selective CPA security of CP-ABE scheme in [4]
with advantage ε plus a negligible amount. The detailed proof
is described in Appendix A.

Theorem 2: The DSA scheme is Selective-IND-CKA
secure in random oracle model, if the decisional linear (DLIN)
assumption holds.

Proof: We reduce the Selective-IND-CKA security of
the DSA to the decisional linear (DLIN) assumption. That
is, if there is a polynomial time adversary A can win
the Selective-IND-CKA-Game with non-negligible advan-
tage ε = AdvSelective-IND-RCCA-Game

DS A,A , we show how to build
another polynomial time simulator B that plays the DLIN
problem with non-negligible advantage. Please also refer to
Appendix B for the detailed proof.

Then, due to the hardness of discrete logarithm problem,
it is easy to find that the trapdoor generation is one-way in
polynomial time, thus we can say that the DSA scheme is
secure in the random oracle model according to Definition 12.

B. Performance Analysis

In this section, we show the communication overhead
between any two entities, and the computation cost on each
entity. In order to show the communication overhead between
any two entities in the DSA scheme, we first present the size
of each component in the following table.

In real applications, the size of shared data is usually larger
than the security parameter (e.g., 512 bits) in the elliptic curve.
So, the data m are firstly encrypted with a content key by using
symmetric encryption methods. The content key is further
encrypted by running DSA encryption algorithm. In this case,
the index size and trapdoor size only corresponding to the

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE II

SIZE OF EACH COMPONENT

TABLE III

COMMUNICATION OVERHEAD

number of keywords associated with the data. As shown in
Table II, the index has only 8704 bits and the trapdoor is only
11264 bits long if we have 5 keywords associated with the
data.

The communication cost of data ciphertexts are fixed from
the data owner to the cloud server, and from the cloud server to
the users. Here, we only evaluate the communication overhead
of the designed DSA scheme which distributes the content
keys. Based on Table II, we give a communication overhead
analysis of the DSA scheme in Table III. We can see that
the data sent from the cloud server to users are independent
with the number of attributes it associated. This can reduce the
communication overhead significantly when there are multiple
data matching the trapdoor. The users only need to send the
transformed secret key for one time whose size is linear to the
number of attributes he/she holds, and receive data in constant
size which are independent with the number of attributes
associated with the data. The constant size data is actually
the content key of symmetric key encryption.

To show the computation cost on each entity, we also do
the experiments on a Unix system with an Intel Core i5 CPU
at 2.4GHz and 8.00GB RAM. The code in the DSA scheme
uses the Pairing-Based Cryptography (PBC) library version
0.5.12, and a symmetric elliptic curve α-curve, where the base
field size is 512-bit and the embedding degree is 2. All the
experimental results are the mean of 20 trials.

Fig. 2(a) shows the computation cost on data owners, which
consists of both data encryption and index generation. The
computation time of the data encryption is linear with the
number of attributes involved in the access policy. To generate
multiple indices for multiple keyword, the data owner can run
the index generation algorithm multiple times and generate the
index one by one. From Fig. 2(a), we can see that the data
encryption algorithm is very efficient, even is more efficient
than the index generation, when the number of keywords is
the same as the number of attributes. This is because there is
a pairing operation during each index generation.

Fig. 2(b) shows the computation cost on users, which
involves three operations: secret key transformation, trapdoor
generation and the data decryption. We can see that both
the secret key transformation and the data decryption only
incur less computation cost. Note that, the data decryption
here is independent with the number of attributes, and even is
more efficient than transforming the simplest secret key which
only consists one attribute. The trapdoor generation algorithm
can also be run repeatedly when there are multiple keywords
involved in the query.

Fig. 2(c) shows the keyword test KTest between the index
and the trapdoor, and the access policy test ATest if passing
the KTest. The ATest also help pre-decrypt data for users if
the access policy can be satisfied by the attributes associated
with the transformed secret key. We can see that the KTest is
linear to the number of keywords and the ATest is also linear
to the number of attributes. The cloud server does a major
decryption computation, which significantly reduces the data
decryption overhead on users.

From the above performance analysis, we can see that the
main computation loads are outsourced from the user to the
cloud by employing the predecryption on the cloud server. The
communication cost and storage overhead are also small on

e(T1, L1) · e(T2, L2)

e(T3, L3)
= e

(
gact1 H0(w

∗)ac+act1, (gb)s1
)

e
(
gbct1 H0(w

∗)bc+bct1 , (ga)s2
)

e
(
gabct1, gst · H0(w)st

)

= e(g, g)abct1(s1+s2)e(H0(w
∗), g)abc(s1+s2)e(H0(w

∗), g)abct1(s1+s2)

e(g, g)abct1st e(H0(w), g)abct1st
(5)

Q = e(T̂1, L1) · e(T̂2, L2)

e(T̂3, L3)

=
e
(

g
αz+βuz

b (gH0(w
∗))act2, gbs1

)
e
(

g
αz+βuz

a (gH0(w
∗))bct2, gas2

)

e
(
gabct2, gst · H0(w)st

)

= e(g, g)αzst e(g, g)βuzst e(g, g)abct2st e(H0(w
∗), g)abct2st

e(g, g)abct2st e(H0(w), g)abct2st

= e(g, g)αzst · e(g, g)βuzst (6)

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT AND PROVABLY SECURE DATA SELECTIVE SHARING AND ACQUISITION 81

Fig. 2. Computation Cost.

the user side. Therefore, we can say that the DSA is efficient
to be implemented in practice, especially on users’ mobile
devices whose computation capabilities or battery are usually
limited.

IX. CONCLUSION

In this paper, we have studied the data selective sharing
and selective acquisition problem in cloud-based systems.
Specifically, we have first formulated the problem by iden-
tifying several design goals in terms of correctness, sound-
ness, security and efficiency. Towards the security definition,
we have proposed three new security models for data security,
index security and trapdoor security, and further proposed an
efficient and provably secure DSA scheme to enable data
owners to control the sharing of their data in fine granularity
and users to refine the data acquisition without revealing their
interests. Finally, we have proved that the DSA is correct,
sound, secure under the security models and random oracle
model, and efficient in practice. In our future work, we are
going to explore trapdoors with more complex predicate over
keywords and extend to support multiple authorities.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1: The DSA scheme is Selective-IND-RCCA
secure in random oracle model, if the decisional q-parallel
Bilinear Diffie-Hellman Exponent (Decisional q-parallel
BDHE) assumption holds.

Proof: The encryption algorithm in DSA scheme is con-
structed based on an adapted ciphertext-policy attribute-based
encryption (CP-ABE) [4], which is proved to be selective
CPA secure under the decisional q-parallel BDHE assumption.
We also follow the construction of [28] to transform the
selective CPA secure CP-ABE to be RCCA secure. Now,
we prove that if there exists a polynomial time adversary A can
play the Selective-IND-RCCA-Game with non-negligible
advantage ε, we can build a simulator B that can break the
selective CPA security of CP-ABE scheme in Appendix A
of [4] with advantage ε plus a negligible amount. We use Cabe

to denote the challenger in the security game of the CP-ABE
scheme in Appendix A of [4].

Init: A chooses the challenge access policy (M∗, ρ∗) and
the challenge keyword w∗, and sends them to the simulator B.
Then, B passes the challenge access policy (M∗, ρ∗) to Cabe.

Setup: B obtains the CP-ABE public parameters pkabe =
(p, g,G, GT , e, gβ, e(g, g)α) from Cabe, and a description of

hash function H . Then, it also randomly selects a, b, c ∈ Z∗p
and adds ga, gb, gabc to pkabe to generate the public key

pk = (p, g,G,GT , e, gβ, e(g, g)α, ga, gb, gabc).

Then, B sends pk to the adversary A.
Phase 1: B initializes empty tables T, T0, T1, T2, T3, T4,

an empty set D, and an integer j = 0. It answers the adversary
A’s queries as follows.

• Random Oracle Hash H0(w): If there is an entry
(w, H0(w)) in T0, return H0(w). Otherwise, it chooses a
random number r0,w ∈ Z∗p and sets H0(w) = gr0,w . Then,
it checks whether gr0,w equals to any existing values, if so,
it re-chooses another random number and checks again.
Then, it records (w, H0(w) = gr0,w) in T0 and return
H0(w).

• Random Oracle Hash H1(cw): If there is an entry
(cw, H1(cw)) in T1, return H1(cw). Otherwise, it chooses
a random number r1,cw ∈ {0, 1}λ and sets H1(cw) = r1,cw .
Then, it checks whether r1,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw, H1(cw) = r1,cw) in
T1 and return H1(cw).

• Random Oracle Hash H2(cw): If there is an entry
(cw, H2(cw)) in T2, return H2(cw). Otherwise, it chooses
a random number r2,cw ∈ {0, 1}∗ and sets H2(cw) = r2,cw .
Then, it checks whether r2,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw, H2(cw) = r2,cw) in
T2 and return H2(cw).

• Random Oracle Hash H3(k, m): If there is an entry (k, m,
H3(k, m)) in T3, return H3(k, m). Otherwise, it chooses a
random number r3,k,m ∈ Z∗p and sets H3(k, m) = r3,k,m .
Then, it checks whether r3,k,m equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (k, m, H3(k, m) = r3,k,m)
in T3 and return H3(k, m).

• Random Oracle Hash H4(k): If there is an entry
(k, H4(k)) in T4, return H4(k). Otherwise, it chooses a
random number r4,k ∈ {0, 1}λ and sets H4(k) = r4,k .
Then, it checks whether r4,k equals to any existing values,
if so, it re-chooses another random number and checks
again. Then, it records (k, H4(k) = r4,k) in T4 and return
H4(k).

• TKQuery(Sj): Basically, A is able to query any trans-
formed key by giving a set of attributes Sj . B sets j :=
j + 1. Considering that the adversary is not allowed to

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

query the secret key that can satisfy the challenge access
policy (M∗, ρ∗) in the security model of the CP-ABE
scheme in [4], but the adversary in our security model is
able to query the transformed secret key for any set of
attributes. Thus, the simulator B generates two different
types of transformed secret keys:

– If Sj satisfies (M∗, ρ∗), the simulator B is not able
to receive the correct secret key corresponding to
Sj from the challenger Cabe. Thus, the simulator
B generates a “special” transformed secret key as
follows: it chooses a random γ ∈ Z∗p as the “master
key”, and generates a secret key sk′. Then, it sets
the transformed secret key as

tk j = (K = gγ gβu j , K ′ = gu j ,∀x ∈ Sj :
Kx = H (x)u j).

and sets the decryption key ŝk j = γ .
– If Sj does not satisfy (M∗, ρ∗), the simulator B

obtains the secret key skabe, j from the challenger
Cabe,

skabe, j = (K = gαgβu j , K ′ = gu j ,∀x ∈ Sj :
Kx = H (x)u j),

and generates the transformed secret key as

tk j = (K̂ = gαz j gβu j z j , K̂ ′ = gu j z j ,∀x ∈ Sj :
K̂x = H (x)u j z j)

by choosing a random number z j ∈ Z∗p as the

decryption key ŝk j .

Finally, B stores the entry (j, Sj , ŝk j , tk j) in Table T
and returns tk j to A.

• DKQuery(i): A cannot corrupt any key responding to the
challenge access policy A∗. If there exists an i th entry in
table T and Si does not satisfy (M∗, ρ∗), it sets D :=
D∪i and obtains the entry (i, Si , ŝki , tki). Then, it returns
the decryption key ŝki to A. If no such entry exists or Si

can satisfy A∗, it then returns ⊥.
• Decrypt(i, CT, A): Considering that the adversary A

can obtain all the transformed secret keys for any sets
of attributes, and it can also query the trapdoor TDw∗
corresponding to the challenge keyword w∗, the adversary
is able to obtain any pre-decrypted data. Thus, without
loss of generality, we assume that all the ciphertexts input
to this Decrypt oracle are already pre-decrypted to the
ElGamal form of

ĈT = (C0 = m ⊕ H4(k), C = k · e(g, g)αsa,

Ĉ = e(g, g)αzsa),

which is associated with an access policy (M, ρ). It then
obtains the i th entry (i, Si , ŝki , tki) in table T , where Si

can satisfy (M, ρ). If there is no such entry in table T1,
it returns ⊥. Then, it checks whether Si can satisfy
the challenge access policy (M∗, ρ∗) and proceeds as
follows:

– If Si ∈ (M∗, ρ∗), then the pre-decrypted data should
be in the form as

ĈT = (C0 = m ⊕ H4(k), C = k · e(g, g)αs,

Ĉ = e(g, g)γ s)

Then, it computes φ = Ĉ1/γ = e(g, g)s . For
each entry (R0,i , mi , si = H3(R0,i , mi)) in T3,

the simulator B checks if e(g, g)si
?= φ. If no

entry matches, it outputs ⊥ to A. If more than one
matches are found, it aborts the simulation. Suppose
(k, m, s = H3(k, m)) is the only match, it gets
H4(k) and tests if C0 = m⊕H4(k), C = k ·e(g, g)αs,
and Ĉ = e(g, g)γ s . If all tests are passed, it sends
m to the adversary A. Otherwise, it returns ⊥ to the
adversary.

– If Si /∈ (M∗, ρ∗), then the pre-decrypted data should
be in the normal form as

ĈT = (C0 = m ⊕ H4(k), C = k · e(g, g)αs,

Ĉ = e(g, g)αsz).

Then, it computes k = C
Ĉ1/z and obtains the record

(k, m, s = H3(k, m)) from table T3. If there is no
such record existing in T3, it aborts with ⊥. It then
gets H4(k) and tests if C0 = m ⊕ H4(k), C = k ·
e(g, g)αs , and Ĉ = e(g, g)αsz. If all tests are passed,
it sends m to the adversary A. Otherwise, it returns
⊥ to the adversary.

Challenge: A submits two equal-length messages m0 and
m1, neither of which equals to the challenge keyword w∗. C

then chooses a random string r ∈ {0, 1}λ and sets R0,0 =
m0 ⊕ r and R0,1 = m1 ⊕ r . It passes R0,0 and R0,1 to the
challenger Cabe. Cabe then flips a random coin τ and outputs
a ciphertext CTabe,τ associated with (M∗, ρ∗) as

CTabe,τ = (Cτ , C ′abe, {Ci , Di }i∈[1,n]).

B then choose two random strings C0, R ∈ {0, 1}λ and a
random number st ∈ Z∗p , and obtains the challenge ciphertext

CTτ = (C0, Cτ , C ′ = C ′abe · gst · H0(R), {Ci , Di }i∈[1,n])

To simulate the index, the simulator B first computes the
ciphertext of the challenge keyword w∗ as

cw∗ = e
(

H0(w
∗), gabc

)st
.

It then randomly chooses s1 ∈ Z∗p and sets s2 = st − s1. Then,
it outputs the index as

Iw∗ =
(

I1 = R ⊕ H1(cw∗), I2 = H2(cw∗),

L1 = (gb)s1, L2 = (ga)s2, L3 = gst · H0(cw∗)st
)

The simulator sends both (CTτ , Iw∗) to the adversary A.
Phase 2: Phase 1 is repeated with the restriction that A

cannot make a trivial decryption query, which means that
Decrypt queries will be answered as in Phase 1, except that if
the outputs would be either m0 or m1, then B responds with
a special message test instead.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT AND PROVABLY SECURE DATA SELECTIVE SHARING AND ACQUISITION 83

Guess: A outputs a guess τ ′ of τ or abort. Now, the
simulator B searches through the table T3 to see if the values
R0,0, R0,1, m0 or m1 appears in any entry. If neither or both
values appear, B outputs the same τ ′ as its guess. If only value
R0,τ ′′ appears, B just ignores the A’s guess and outputs τ ′′ as
its guess.

The advantage of the simulator in the CP-ABE game can
be computed as

ASelective-IND-CPA
B = 1

2
· ε + 1

2
· ε0,

where ε is the advantage of the adversary A in our secu-
rity game and ε0 is the probability that there is an entry
(Rb, mb, sa = H3(Rb, mb)) in the table T3 and passes all the
following test: C ′ = gsa and Cb = Rb · e(g, g)αsa . However,
this probability is negligible.

Therefore, we can say that if ε is non-negligible,
ASelective-IND-CPA

B is also non-negligible, which breaks the
CP-ABE scheme in [4].

APPENDIX B
PROOF OF THEOREM 2

Theorem 2: The DSA scheme is Selective-IND-CKA secure
in random oracle model, if the decisional linear (DLIN)
assumption holds. Proof: We reduce the Selective-IND-
CKA security of the DSA to the decisional linear (DLIN)
assumption. That is, if there is a polynomial time adversary A

can win the Selective-IND-CKA-Game with non-negligible
advantage ε = AdvSelective-IND-RCCA-Game

DS A,A , we show how to
build another polynomial time simulator B that plays the DLIN
problem with non-negligible advantage.

Init: A selects a challenge data m∗ from the data space and
sends it to B.

Setup: B runs the Setup(1λ) algorithm to generate

msk = (α, β, a, b, c).

The public key is set as

pk =
(

p, g,G,GT , e, ga, gb, gabc, gβ, e(g, g)α
)
.

It gives pk to A.
Phase 1: A queries trapdoors for any keyword w j and trans-

formed secret keys for any set of attributes Sj . To simulate the
trapdoor generation algorithm, the simulator B first simulates
the random oracle of H0(w) by maintaining a table T0. For
a new keyword w not appeared in the table, it chooses a
random number r0,w ∈ Z∗p and sets H0(w) = gr0,w , where
H0(w) should not equal to any existing values. Otherwise,
it re-chooses another random number and checks again. Then,
it stores this entry (w, H0(w)) into the table T0. If there is
already an entry corresponding to the queried keyword w,
it just returns the existing value H0(w). Similarly, it use
another table T to simulate the random oracle of H (x) for any
attribute x by setting H (x) = grx , where rx ∈ Z∗p is randomly
selected. Moreover, it also simulates the random oracles of
H1 and H2 as
• Random Oracle Hash H1(cw): If there is an entry

(cw, H1(cw)) in T1, return H1(cw). Otherwise, it chooses
a random number r1,cw ∈ {0, 1}λ and sets H1(cw) = r1,cw .
Then, it checks whether r1,cw equals to any existing

values, if so, it re-chooses another random number and
checks again. Then, it records (cw, H1(cw) = r1,cw) in
T1 and return H1(cw).

• Random Oracle Hash H2(cw): If there is an entry
(cw, H2(cw)) in T2, return H2(cw). Otherwise, it chooses
a random number r2,cw ∈ {0, 1}∗ and sets H2(cw) = r2,cw .
Then, it checks whether r2,cw equals to any existing
values, if so, it re-chooses another random number and
checks again. Then, it records (cw, H2(cw) = r2,cw) in
T2 and return H2(cw).

It first gets a secret key by querying the secret key genera-
tion algorithm SKGen for the attribute set Sj as

sku =
(
(ac, bc), K = gαgβu, Ka = g

α
a g

βu
a , Kb = g

α
b g

βu
b ,

K ′ = gu, ∀x ∈ Su : Kx = H (x)u
)
.

Note that, the secret key can be first queried from the secret
key generation oracle in the underlying CP-ABE scheme [4]
and then generates Ka and Kb from K , which means that the
CP-ABE can be used as a blackbox.

Then, it transforms the secret key to compute a transformed
secret key tku as

tku =
(

K̂ = (K)z = gαzgβuz, K̂ ′ = (K ′)z = guz,

∀x ∈ Su : K̂x = (Kx)
z = H (x)uz

)

and sends tku to the adversary A, but keeps the decryption
key as ŝku = z.

Note that, the adversary A can query any transformed secret
key corresponding to any sets of attributes in this game.
Actually, the challenge data is selected by the adversary, and
the ciphertext of the challenge data is independent with the
keyword. Therefore, we can say that the data ciphertext and
the transformed secret keys do not increase the advantage of
distinguishing the index.

The simulator takes the decryption key and the secret key
as input, and runs TDGen to generate the trapdoor of w j as

TD j =
(

T1, j = gact1, j H0(w j)
ac+act1, j ,

T̂1, j = (Kb)
z(gH0(w j))

act2, j ,

T2, j = gbct1 H0(w j)
bc+bct1,

T̂2, j = (Ka)
z(gH0(w j))

bct2, j ,

T3, j = (gabc)t1, j , T̂3, j = (gabc)t2, j
)

Challenge: A submits two equal-size keywords w0, w1. The
only restriction is that neither w0 nor w1 has been queried in
Phase 1. C first flips a random coin τ , and runs the Encrypt
algorithm by taking (m∗, wτ) as inputs. Because the ciphertext
will not increase the advantage of distinguishing the index,
so we omit the ciphertext here. Suppose the random element
associated with the ciphertext is R. The simulator takes
this random element R as one of inputs and computes the
ciphertext of the keyword wb as

cwτ = e
(

H0(wτ), gabc
)st

.

It then randomly chooses s1 ∈ Z∗p and set s2 = st − s1. Then,
it outputs the index as

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Iwτ =
(

I1 = R ⊕ H1(cwτ), I2 = H2(cwτ),

L1 = (gb)s1, L2 = (ga)s2, L3 = gst · H0(wτ)
st

)

Phase 2: Same as Phase 1 as long as the challenged
keywords are not queried.

Guess: A outputs a guess τ ′ of τ .
Because the random element R is uniformly distributed,

I1 = R ⊕ H1(cwτ) is also uniformly distributed. More-
over, L1, L2 is also uniformly distributed. If there is an
adversary A wins the above Selective-IND-CKA-Game
with non-negligible advantage, we can say that when given
(ga, gb, gbs1, gas2), the adversary can distinguish the tuple
(h = g ·H0(wτ), hs1+s2 = (g ·H0(wτ))

st) from a (h, R) (where
R is a random element in G) with non-negligible advantage,
which contradicts the DLIN assumption.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. 800-145,
2011.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conf. Comput. Commun. Secur. (CCS), 2006, pp. 89–98.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[4] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Public Key Cryptography.
Berlin, Germany: Springer-Verlag, 2011, pp. 53–70.

[5] K. Yang, X. Jia, K. Ren, R. Xie, and L. Huang, “Enabling efficient
access control with dynamic policy updating for big data in the cloud,”
in Proc. INFOCOM, Apr. 2014, pp. 2013–2021.

[6] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “DAC-MACS: Effective
data access control for multiauthority cloud storage systems,” IEEE
Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1790–1801, Nov. 2013.

[7] D. Xiaoding Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy. (SP),
2000, pp. 44–55.

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Proc. EUROCRYPT, in Lecture
Notes in Computer Science, vol. 3027. Springer, 2004, pp. 506–522.

[9] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory Cryptography, in Lecture Notes in Computer
Science, vol. 4392. Springer, 2007, pp. 535–554.

[10] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2014, pp. 226–234.

[11] K. Liang and W. Susilo, “Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,” IEEE Trans. Inf. Foren-
sics Security, vol. 10, no. 9, pp. 1981–1992, Sep. 2015.

[12] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng, “Authorized keyword
search on encrypted data,” in Proc. Eur. Symp. Res. Comput. Secur.,
in Lecture Notes in Computer Science, vol. 8712. Springer, 2014,
pp. 419–435.

[13] H. Cui, Z. Wan, R. Deng, G. Wang, and Y. Li, “Efficient and expressive
keyword search over encrypted data in cloud,” IEEE Trans. Dependable
Secure Comput., vol. 15, no. 3, pp. 409–422, May/Jun. 2018.

[14] Y. Yu, J. Shi, H. Li, Y. Li, X. Du, and M. Guizani, “Key-policy attribute-
based encryption with keyword search in virtualized environments,”
IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1242–1251, Jun. 2020.

[15] H. Yin et al., “CP-ABSE: A ciphertext-policy attribute-based searchable
encryption scheme,” IEEE Access, vol. 7, pp. 5682–5694, 2019.

[16] A. Michalas, “The lord of the shares: Combining attribute-based encryp-
tion and searchable encryption for flexible data sharing,” in Proc. 34th
ACM/SIGAPP Symp. Appl. Comput., Apr. 2019, pp. 146–155.

[17] J. Baek, R. Safavi-Naini, and W. Susilo, “On the integration of public
key data encryption and public key encryption with keyword search,”
in Proc. Int. Conf. Inf. Secur., in Lecture Notes in Computer Science,
vol. 4176. Springer, 2006, pp. 217–232.

[18] K. Yang, X. Jia, and K. Ren, “Secure and verifiable policy update
outsourcing for big data access control in the cloud,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 12, pp. 3461–3470, Dec. 2015.

[19] K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-domain attribute-
based access control for cloud-based video content sharing: A crypto-
graphic approach,” IEEE Trans. Multimedia, vol. 18, no. 5, pp. 940–950,
May 2016.

[20] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunctive
keyword search and its extension to a multi-user system,” in Proc. Int.
Conf. Pairing-Based Cryptogr., in Lecture Notes in Computer Science,
vol. 4575. Springer, 2007, pp. 2–22.

[21] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy, “Blind and
anonymous identity-based encryption and authorised private searches
on public key encrypted data,” in Proc. Int. Workshop Public Key
Cryptogr., in Lecture Notes in Computer Science, vol. 5443. Springer,
2009, pp. 196–214.

[22] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, “Enabling efficient
multi-keyword ranked search over encrypted mobile cloud data through
blind storage,” IEEE Trans. Emerg. Topics Comput., vol. 3, no. 1,
pp. 127–138, Mar. 2015.

[23] C. Wang, W. Li, Y. Li, and X. Xu, “A ciphertext-policy attribute-based
encryption scheme supporting keyword search function,” in Cyberspace
Safety and Security, in Lecture Notes in Computer Science, vol. 8300.
Springer, 2013, pp. 377–386.

[24] D. Boneh and M. K. Franklin, “Identity-based encryption from the
Weil pairing,” in Proc. CRYPTO. London, U.K.: Springer-Verlag, 2001,
pp. 213–229.

[25] R. Zhang and H. Imai, “Generic combination of public key encryption
with keyword search and public key encryption,” in Proc. Int. Conf.
Cryptol. Netw. Secur., in Lecture Notes in Computer Science, vol. 4856.
Springer, 2007, pp. 159–174.

[26] A. Beimel, “Secure schemes for secret sharing and key distribution,”
Ph.D. dissertation, Israel Inst. Technol., Technion, Haifa, Israel, 1996.

[27] R. Canetti, H. Krawczyk, and J. B. Nielsen, “Relaxing chosen-ciphertext
security,” in Advances in Cryptology, in Lecture Notes in Computer
Science, vol. 2729. Springer, 2003, pp. 565–582.

[28] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption
of ABE ciphertexts,” in Proc. 20th USENIX Secur. Symp. Berkeley, CA,
USA: USENIX Association, 2011, p. 34.

[29] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. 1st ACM Conf. Comput.
Commun. Secur. (CCS), New York, NY, USA: ACM, 1993, pp. 62–73.

Kan Yang (Senior Member, IEEE) received the
B.Eng. degree in information security from the
University of Science and Technology of China
in 2008 and the Ph.D. degree in computer sci-
ence from the City University of Hong Kong in
2013. He is currently an Assistant Professor with
the Department of Computer Science, University of
Memphis, USA. His research interests include data
security, blockchain, AI security, network security,
and applied cryptography.

Jiangang Shu (Member, IEEE) received the Ph.D.
degree in computer science from the City University
of Hong Kong (CityU), Hong Kong, in 2019. He is
currently a Research Scientist with the Peng Cheng
National Laboratory, Department of New Networks,
Shenzhen, China. He was a Postgraduate Visiting
Student with the Secure Mobile Centre, Singapore
Management School, Singapore, and a Post-Doctoral
Fellow at CityU. His research interests include AI
privacy, crowdsourcing and cloud security, the IoT
security, applied cryptography, data security and

privacy, and searchable encryption.

Ruitao Xie (Member, IEEE) received the B.Eng.
degree from the Beijing University of Posts and
Telecommunications in 2008 and the Ph.D. degree
in computer science from the City University of
Hong Kong in 2014. She is currently an Assistant
Professor with the College of Computer Science
and Software Engineering, Shenzhen University.
Her research interests include AI networking and
mobile computing, distributed systems, and cloud
computing.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 09,2022 at 06:26:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

